函数的概念优秀教学设计最新4篇【导读】这篇文档“函数的概念优秀教学设计最新4篇”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!函数的概念教学设计【第一篇】《函数的概念》的教学设计教材分析本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本(A版)》的第一章1.2.1函数的概念。函数是中学数学中最重要的基本概念之一,它贯穿在中学代数的始终,从初一字母表示数开始引进了变量,使数学从静止的数的计算变成量的变化,而且变量之间也是相互联系、相互依存、相互制约的,变量间的这种依存性就引出了函数。在初中已初步探讨了函数概念、函数关系的表示法以及函数图象的绘制。到了高一再次学习函数,是对函数概念的再认识,是利用集合与对应的思想来理解函数的定义,从而加深对函数概念的理解。函数与数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、互相转化。函数的学习也是今后继续研究数学的基础。在中学不仅学习函数的概念、性质、图象等知识,尤为重要的是函数的思想要更广泛地渗透到数学研究的全过程。函数是中学数学的主体内容,起着承上启下的作用。函数又是初等数学和高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的实质是揭示了客观世界中量的相互依存又互有制约的关系。因此对函数概念的再认识,既有着不可替代的重要位置,又有着重要的现实意义。本节的内容较多,分二课时。本课时的内容为:函数的概念、函数的三要素、简单函数的定义域及值域的求法、区间表示等。(第二课时内容为:函数概念的复习、较复杂函数的定义域及值域的求法、分段函数、函数图象等)学情分析学生在学习本节内容之前,已经在初中学习过函数的概念,并且知道可以用函数描述变量之间的依赖关系。然而,函数概念本身的表述较为抽象,学生对于动态与静态的认识尚为薄弱,对函数概念的本质缺乏一定的认识,对进一步学习函数的图象与性质造成了一定的难度。初中是用运动变化的观点对函数进行定义,虽然这种定义较为直观,但并未完全揭示出函数概念的本质。由于数学符号的抽象性,学生因此会望而却步,从而影响了学生学习数学的积极性。高一学生虽然在初中已接触了函数的概念,但在重新学习它时还是存在一定的障碍,其中一个原因就是对新引进的函数符号“y=f(x)”不甚其解。教师应在教学中有意识地挖掘函数符号的审美因素,以美启真。在本节课的教学过程中,教师应该给学生提供实践动手的机会,为学生创设熟悉的问题情境,引导学生观察、计算、思考,从而理解问题的本质,归纳总结出结论。教学目标1、正确理解函数的概念,能用集合和对应的语言来刻画函数;2、理解函数的三要素及函数符号的深刻含义;会解决一些相关简单问题;3、渗透从特殊到一般、数形结合的数学思想方法,培养学生观察、分析、归纳的逻辑思维能力。教学重点函数的概念及的理解与深化。的理解。教学难点函数的概念及函数符号教学方法本节课采用“问题启发式”教学方法:本节课是概念课,结合初中所学,根据学生的心理特征和认知规律,我采取问题启发式的教学法;以问题串为主线,通过设置多个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,也通过问题的处理加强对函数概念的理解,这也符合建构主义的教学理论。教学过程一、回顾旧知,引出课题。设计意图通过初中函数概念的复习,重点强调初中函数概念是从变量变化的观点出发的,为后面学习和理解高中函数概念与初中概念区别做必要的准备。问题3:由上述定义你能判断“y=1”是否表示一个函数?设计意图通过已有概念但不太容易回答的问题,引发学生的认知冲突,有着承上启下的作用。既是对初中已学的函数概念的进一步深入,又是为下一步用集合语言来刻画函数的本质做好伏笔。二、观察分析、探索新知。实例一、一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5。问题4:t的范围是什么?h的范围是什么?分别用集合表示出来。问题5:对于集合A中的每一个t值按照图象所示是否在集合B中都有唯一的h值与它对应?实例二、如图下表是2015年11月16日,深证指数合肥百货从9:30开盘到11:30收盘每股价格波动图像问题6:(1)时间和指数的变化范围可以分别用集合A、B表示出来吗?(2)对于集合A中的每一个t值按照图象所示是否在B中都有唯一的价格指数S值与它对应?实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表1—中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化问题7:请仿照实例一、二,描述恩格尔系数和时间的关系。设计意图通过三个不同形式的实例和问题4、5、6、7的提出及几何画板动态地显示炮弹高度h关于炮弹发射时间t的函数来启发学生观察、思考、讨论,尝试用集合与对应的语言描述变量之间的依赖关系:对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y与它对应,记作f:A→B。三、形成概念、深化理解函数概念:设是AB、是非空的数集,如果按某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→为集合A到集合B的一个函数,记作y=f(x)。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合叫做函数的值域.显然,值域是集合B的子集。请同学们勾画出概念中的关键词,通过交流得出以下几点:①非空的数集;②确定的对应关系③任意性与唯一性。利用用《几何画板》显示这三种函数的动态图象,启发学生观察、分析,并请同学们思考之后填写下表:设计意图在前面三个实例的基础上深化理解符号y=f(x),f(a)f(x)与的区别与联系,同时利用信息技术工具画出函数的图象,是让学生进一步体会“数”与“形”结合在理解函数中的作用,更好地帮助理解上述函数的三个要素,从而加强学生对函数概念的理解,进一步挖掘函数概念中集合与函数的联系。明确定义域、值域和对应关系是决定函数的三要素,这是一个整体,以此更好地培养学生深层次思考问题的习惯。问题10:函数定义中有哪几个要素?三要素:定义域、值域、对应法则,缺一不可。四、知识应用,深化目标。设计意图例题的处理以学生回答、板演的形式进行,充分发挥师与生、生与生的互动,以教师、学生相互交流来巩固本节课的学习。利用课堂练习巩固所学的知识内容、数学思想和方法,以求达到教学目标。五、课堂小结,教师评价。学生对本节课所学的内容进行自主小结,教师及时进行归纳总结:1.函数的概念;2.函数的三要素;3.数形结合的思想;设计意图再现课堂,小结提升,有助于学生明确重点。六、作业布置课本P24,习题1.2A组,第1、3、4题。作业补充:求下列函数的定义“函数的概念”教学设计【第二篇】一、内容分析内容函数的概念.内容解析“函数的概念”是北师大版义务教育课程标准实验教科书八年级上册第四章第1节p75~p78的内容,是在七年级下册学习了“变量之间的关系”的基础上来学习本课,其中函数的概念是本节核心内容.函数概念的核心是两个变量间的特殊对应关系:(1)由一个变量确定另一个变量;(2)唯一对应关系.如果直接研究某个量y有一定困难,我们可以去研究另一个与之有关的量x,从而达到研究的目的.这也是一种化繁为简的转化思想.本节课首先必须准确认识变量与常量的特征,初步感受到现实世界中各种变量之间联系的复杂性,同时是后面学习一次函数、反比例函数、二次函数的基础.本设计主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念.让学生分析大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,由一个变量唯一确定另一变量.二、教法与学法分析本节课将采用以学案导学的djp教学模式,这种教学模式主要有以下六个环节:示案导学―交流讨论―精讲评析―练习巩固―反思拓展―达标检测.三、目标设计目标理解函数的概念.目标解析1.借助生活实例,引领学生参与函数概念的形成过程.2.体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性.学习目标1.初步掌握函数概念,判断两个变量间的关系是否能看作函数.2.初步感受函数表示的三种形式:表格法、图象法、解析式法.根据两个变量间的关系式,给定其中一个量,会相应地求出另一个量的值.3.经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力.教学重点1.理解和掌握函数的概念.2.判断两个变量之间的关系是否可看作函数.教学难点1.准确理解函数概念中“唯一确定”的含义.2.能把实际问题抽象概括为函数问题.四、教学过程设计计意图(1)通过总结,将关键词串联起来,形成与现行初中函数定义很接近的定义,完成对函数概念内涵的第四次完整认识.(2)抓住函数概念中“唯一确定”这一难点,结合前三个实例使学生能准确理解“唯一确定”的内涵.五、教学反思本节公开课在教师的精心准备之下,按照djp教学模式常规要求,顺利完成了教学目标。现将本节课中具体作以下几点反思:1.函数对初中生来是第一次接触,在教学设计的时候,充分列举生活中有关变量的例子,让学生去感受两个变量之间的关系,提高学生的学习兴趣.2.本节课属于概念课,根据djp教学模式下概念课的要求,认真设计教学过程和修改学案,经过教研组多次研讨,最终形成此教学设计.3.本节课在原有基础上作出了一些调整,在情境引入时,列举生活中的变量,并演示摩天轮模型转动,同时提出问题:在转动过程中,有几个变量?你了解它们之间的关系吗?从而引出本节课的主题――函数的概念,并由此进入情境1的学习,此环节由教师主讲,目的在于为后面学生讲解情境2,3作出示范,特别是在图像中,判断两个变量是否成函数关系时,由于学生还没学习直角坐标系,所以通过ppt多次演示,教会学生判断方法,为后面的练习作好铺垫.作者简介:冉龙海,男,1980年4月出生,本科,就职于四川省成都市龙泉驿区第十中学校,研究方向:班主任教育工作。高中函数概念教学设计【第三篇】高中函数概念教学设计三维目标了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;理解:函数概念的本质;抽象的函数符号f(x)的意义;f(a)(a为常数)与f(x)的区别与联系;会求一些简单函数的定义域;经历:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理、发展学生的抽象思维能力;体验:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.教学重点函数概念的形成,正确理解函数的概念.教学难点发展学生的抽象思维能力,对函数概念本质的理解.教法选择问题式教学法:本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这也符合建构主义的教学理论.学法选择探究式学法:新课程要求课堂教学的着力点是尊重学生的主体地位,发挥学生的主动精神,培养学生的创新能力,使学生真正成为学习的主体,结合本堂课的特点,我倡导的是探究式学法;让学生在探究问题的过程中,通过老师的引导归纳概括出函数的概念,通过问题的解决,达到熟练理解函数概念的目的,从而让学生由“被动学会”变成“主动会学”.教学媒体选择教学中使用多媒体来辅助教学,其目的是充分发挥快捷、生动、形象的特点,为学生提供直观感性的材料,有助于适当增加课堂容量,提高课堂效率;同时与黑板板书相结合.教学过程设计(一).结构分析为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(二).教学过程课题引入xx年9月5日0时14分,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功将“鑫诺六号”通信广播卫星送入太空.