小学六年级数学优秀教案3篇什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?一起看看小学六年级数学优秀教案!欢迎查阅!小学六年级数学优秀教案1教学目标:1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。教学重点:能用数对表示物体的位置。教学难点:能用数对表示物体的位置,正确区分列和行的顺序。教学准备:投影仪、本班学生座位图教学过程:一、复习旧知,初步感知1、教师提问:同学们,你能介绍自己座位所处的位置吗?学生介绍位置的方式可能有以下两种:(1)用“第几组第几个”描述。(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说2、我们全班有48名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。二、新知探究1、教学例1(出示本班学生座位图)(1)如果老师用第二列第三行来表示同学的位置,那么你也能用这样的方法来表示自己的位置吗?学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)(3)教学写法:同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)2、小结例1:(1)确定一个同学的位置,用了几个数据?(2个)(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。{在比较中发现不同之处,从而加深学生对数对的更深了解。}3、练习:(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。(电影院里的座位、地球仪上的经纬度、我国古代围棋等。){拓宽学生的视野,让学生体会数学在生活中的应用。}三、当堂测评教师课件出示,学生独立完成。小组内评比纠错。{做到兵强兵、兵练兵。}四、课堂总结我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?{让学生说出,了解对知识的掌握情况。}小学六年级数学优秀教案2教学目标1.使学生理解解比例的意义.2.使学生掌握解比例的方法,会解比例.教学重点使学生掌握解比例的方法,学会解比例.教学难点引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式.教学过程一、复习准备(一)解下列简易方程,并口述过程.2=8×9(二)什么叫做比例?什么叫做比例的基本性质?(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?6∶10和9∶1520∶5和4∶15∶1和6∶2(四)根据比例的基本性质,将下列各比例改写成其他等式.3∶8=15∶40二、新授教学(一)揭示解比例的意义.1.将上述两题中的任意一项用来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.2.学生交流根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.(二)教学例2.例2.解比例3∶8=15∶1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.2.组织学生交流并明确.(1)根据比例的基本性质,可以把比例改写为:3=8×15.(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.(3)规范并板书解比例的过程.解:3=8×15=40(三)教学例3例3.解比例1.组织学生独立解答.2.学生汇报3.练习:解下面的比例.=∶=∶三、全课小结这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.小学六年级数学优秀教案3知识目标使学会解比例的方法,进一步理解和掌握比例的基本性质。能力目标联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。情感目标利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。重点使学会解比例的方法,进一步理解和掌握比例的基本性质。难点体现解比例在生产生活中的广泛应用。教学过程一、旧知铺垫1、什么叫做比例?2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?3、比例有几种表示形式?二、探索新知1、出示埃菲尔铁挂图2、出示例题(1)、读题。(2)、从这道题里,你们获得了哪些信息?(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。2、教学例3过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?(1)、出示例3,问:这题与刚刚那个比例有哪些不同?(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)(3)、在这个比例里,哪些是外项?哪些是内项?(4)、解答(提问:你们是怎么解答的?)、检验。(5)、=拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?总结这节课主要学习了什么内容?作业布置教材43页5题板书设计解比例例3、解比例=解:2.4=1.5×6=()×()()