基本不等式教学设计4篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

基本不等式教学设计4篇【导读】这篇文档“基本不等式教学设计4篇”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!基本不等式教学设计1《基本不等式》教学设计3.4.1基本不等式开江中学魏江兰目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。2难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。教法分析本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。《基本不等式》教学设计教学准备多媒体课件、板书教学过程教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。具体过程安排如下:一、创设情景,提出问题;设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。[问]你能在这个图中找出一些相等关系或不等关系吗?本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式。在此基础上,引导学生认识基本不等式。二、抽象归纳:一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。[问]你能给出它的证明吗?证明:因为,即(当时取等号)特别地,当a0,b0时,在不等式中,以a、b分别代替a、b,得到什么?设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.《基本不等式》教学设计答案:。2你能用不等式的性质直接推导这个不等式吗?证明:(分析法):由于,于是要证明,只要证明即证2ab,,即,所以,(当时取等号)归纳总结如果a,b都是正数,那么,当且仅当a=b时,等号成立。称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。其中为a,b的几何平均数。文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究的几何解释,通过数形结合,赋予不等式不等式几何直观。进一步领悟不等式中等号成立的条件。如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。《基本不等式》教学设计4.应用举例,巩固提高我们可以用两个重要不等式来解决什么样的问题呢?例1(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)对于(1)若(2)若,(定值),则当且仅当(定值),则当且仅当时,时,有最小值有最大值;.(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)1例2:当时,求的最小值?x1变式1:当时,有最值吗?x1变式2:当时,有最值吗?x通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.练一练(自主练习):课本练习5.归纳小结,反思提高《基本不等式》教学设计基本不等式:若若,则,则(当且仅当(当且仅当时,等号成立)时,等号成立)(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法(一正二定三相等).6.布置作业,课后延拓(1)基本作业:课本P100习题组1、2、3题(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.基本不等式教学设计2《基本不等式》教学设计3.4.1基本不等式教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如数形结合、归纳猜想、演绎推理、分析法证明等在各种不等式研究问题中有着广泛的应用;另外它在如“求面积一定,周长最小;周长一定,面积最大”等实际问题的计算中也经常涉及到。就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律《基本不等式》教学设计的方法,体验成功的乐趣。3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。2难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。教法分析本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。教学准备多媒体课件、板书教学过程教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。具体过程安排如下:一、创设情景,提出问题;设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,《基本不等式》教学设计颜色的明暗使它看上去像一个风车,代表中国人民热情好客。[问]你能在这个图中找出一些相等关系或不等关系吗?本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式。在此基础上,引导学生认识基本不等式。二、抽象归纳:一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。[问]你能给出它的证明吗?学生在黑板上板书。特别地,当a0,b0时,在不等式中,以a、b分别代替a、b,得到什么?设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.答案:。2归纳总结如果a,b都是正数,那么,当且仅当a=b时,等号成立。称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。其中为a,b的几何平均数。三、理解升华:1、文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。2、联想数列的知识理解基本不等式已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?两个正数的等差中项不小于它们正的等比中项。《基本不等式》教学设计3、符号语言叙述:若,则有,当且仅当a=b时,。22[问]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)“当且仅当a=b时,等号成立”的含义是:当a=b时,取等号,即;2仅当a=b时,取等号,即。24、探究基本不等式证明方法:[问]如何证明基本不等式?(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)2方法一:作差比较或由展开证明。方法二:分析法(完成课本填空)设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。要证①2只要证②要证②,只要证③要证③,只要证显然,④是成立的。当且仅当a=b时,④中的等号成立。点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法.《基本不等式》教学设计5、探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生的几何解释,通过数形结合,赋予不等式探究不等式几何直观。进一步领悟不等式中等号成立的条件。如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。四、探究归纳下列命题中正确的是①对于任意实数a,b,均有;②当时,由于,当且仅当时,即x=1时,等号成立。所以函数的最小值为2;π4π4(0,)的最小当时,有;所以函数在2sinx2sinx值为4。以上命题均是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这些“陷阱”要让学生自己往里跳,然后自己再从中爬出来,完全放手让学生自主探究,老师指导,师生归纳总结。《基本不等式》教学设计结论:若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值;若两正数的和为定值,

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功