圆的标准方程教学反思版【通用4篇】【导读】这篇文档“圆的标准方程教学反思版【通用4篇】”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!圆的标准方程教学反思【第一篇】教学反思——圆的标准方程圆是我们在学习了曲线方程后初次运用所学知识讨论已知曲线的方程,在初中学生已经学习过圆的几何性质,并且前面讨论了直线与方程,因此该部分的重点是运用解析几何来体现圆的性质,在第一课时的教学中,我的教学设计分了以下几步:一、情景创设通过多媒体展示“嫦娥二号”升空过程,指出其在宇宙中的飞行轨迹近似是一个圆,让同学类比直线与方程的思想,探究是否可以在平面直角坐标系中用方程表示圆。该情境不仅引入本节新课的课题,还升华了学生的爱国主义情操,为我国的高科技迅速发展感到骄傲,同时也激励了学生努力学习,将来做一个对国家有用的人。二、探究新知提问:“如何确定一个圆?”“在给定圆心和半径的基础上,结合我们前面所学的曲线方程的求解,应该如何建立圆的方程?”(学生推导):建立平面直角坐标系,设M(x,y)是圆上任意一点,因为点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}由两点间的距离公式,点M适合的条件可表示为把①式两边平方,得(x―a)2+(y―b)2=r2②根据曲线与方程思想,确定②为在平面直角坐标系中圆的标准方程。此处通过学生分组合作探究,不仅是对数学知识技能的提高,还锻炼了学生自主思考、主动探索、积极合作的能力。并且我在教学中以比赛的性质鼓励学生,通过学习上的成功引发学生继续学习的兴趣,为后续知识的学习提供了良好的环境。三、经典例题1、已知圆的方程为(x+1)2+(y+3)2=2;⑴指出圆的圆心和半径(进一步分析圆标准方程的特征)⑵点A(1,-2)在圆上吗?点B(4,1)呢?能给出确定点与圆的位置关系的一般方法吗?2、求出满足下列条件的圆的方程⑴圆心在(1,-3)且与X轴相切⑵半径为2且与X轴Y轴都相切⑶求以点C(1,3)为圆心,并和直线相切的圆的方程。该部分我着重以曲线与方程思想为主体,用解析几何诠释圆的几何性质。本意是想让学生把初中所熟知的知识用新的数学语言表达,但是这里情况并不让我满意。主要体现在两个方面:第一、很多学生对之前讨论的圆的几何性质比较生疏,课前准备工作没做好,导致课堂反应速度较慢,影响课程进度。第二、由于第一次正式研究曲线方程的应用,部分同学有无从下手的感觉,不能准确找到问题的切入点,反映了对基础知识的理解还不够透彻。如果当时我给出更多的提示,充分重视数形结合思想,效果可能会更好。最后,我对本节课的教学进行了总结、反思:在整体的设计上,我通过适当的创设情境,调动学生的学习兴趣。然后以问题做链,环环相扣,运用前段时间学习的求曲线的方法引导学生探索方程,使学生的探究活动贯穿始终.从圆的标准方程的推导到标准方程的求解都是在问题的指引下,通过我的适度引导、侧面帮助、不断肯定,由学生探究完成并走向成功。在教学细节上,还有以下几点值得关注:1、从教材位置上看,本节内容安排在曲线方程概念和求曲线方程之后,三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备。同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法。2、在解决有关圆的问题的过程中多次用到配方法、待定系数法、数形结合等思想方法,还经常用到一元二次方程的理论、平面几何知识等,教师在教学中要注意多复习、多运用,多总结,培养学生运算能力和简化运算过程的意识。3、有关圆的内容非常丰富,有很多有价值的问题,建议适当选择一些内容供学生研究。例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题等等。圆的标准方程教案【第二篇】修改后:圆的标准方程三维目标:知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。2、会用待定系数法求圆的标准方程。过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。教学重点:圆的标准方程教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。教学过程:1、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件化简可得:2②64A2M-55-2-4引导学生自己证明为圆的方程,得出结论。方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。2、知识应用与解题研究例(1):写出圆心为半径长等于5的圆的方程,并判断点是否在这个圆上。(1),点在圆外(2),点在圆上22222(3)的三个顶点的坐标是求它的外接圆的方程例(3):已知圆心为C的圆经过点A(1,1)和且圆心在上,求圆心为C的圆的标准方程.4l2A-5m5-2CB-4-6总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC外接圆的标准方程的两种求法:①、根据题设条件,列出关于a、b、r的方程组,解方程组得到a、b、r得值,写出圆的标准方程.根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.练习:课本p127第1、3、4题提炼小结:1、圆的标准方程。2、点与圆的位置关系的判断方法。3、根据已知条件求圆的标准方程的方法。作业:课本p130习题4.1第2、3、4题修改后:圆的标准方程三维目标:知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。2、会用待定系数法求圆的标准方程。过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。教学重点:圆的标准方程教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。教学过程:1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?探索研究:2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件化简可得:2②64A2M-55-2-4引导学生自己证明为圆的方程,得出结论。方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。3、知识应用与解题研究例(1):写出圆心为半径长等于5的圆的方程,并判断点是否在这个圆上。分析探求:可以从计算点到圆心的距离入手。探究:点M(x0,y0)与圆的关系的判断方法:(1),点在圆外(2),点在圆上22222222(3)的三个顶点的坐标是求它的外接圆的方程师生共同分析:从圆的标准方程2可知,要确定圆的标准方程,可用待定系数法确定a、b、r三个参数.(学生自己运算解决)例(3):已知圆心为C的圆经过点A(1,1)和且圆心在上,求圆心为C的圆的标准方程.师生共同分析:如图确定一个圆只需确定圆心位置与半径大小.圆心为C的圆经过点A(1,1)和由于圆心C与A,B两点的距离相等,所以圆心C在险段AB的垂直平分线m上,又圆心C在直线l上,因此圆心C是直线l与直线m的交点,半径长等于CA或CB。(教师板书解题过程。)4l2A-5m5-2CB-4-6总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC外接圆的标准方程的两种求法:②、根据题设条件,列出关于a、b、r的方程组,解方程组得到a、b、r得值,写出圆的标准方程.根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.练习:课本p127第1、3、4题提炼小结:4、圆的标准方程。5、点与圆的位置关系的判断方法。6、根据已知条件求圆的标准方程的方法。作业:课本p130习题4.1第2、3、4题圆的标准方程教学设计doc【第三篇】《4.1.1圆的标准方程》教学设计清镇市红枫中学邵国荣一、教学目标:1.知识与技能(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;(2)会用待定系数法求圆的标准方程。2.过程与方法通过圆的标准方程解决实际问题的学习,进一步培养学生能用解析法研究几何问题的能力,注意培养学生观察问题、发现问题和解决数学问题的能力。3.情感、态度与价值观通过应用圆的知识解决实际问题的学习从而激发学生学习数学的热情和兴趣。二、教学重难点:重点:掌握圆的标准方程的推导及求法。难点:根据不同的已知条件,利用待定系数法求圆的标准方程。三、教学方法:启发式、讲练结合。四、教学过程:(一)创设情境,导入新课在直角坐标系中,确定圆的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么?什么叫圆?圆的定义:平面内到定点的距离等于定长的点的集合。在平面直角坐标系中,任何一条直线都可以用一个一元二次方程来表示,那么圆是否也可以用一个方程来表示呢?如果能,这个方程又有什么特征呢?(二)师生互动,探究新知确定圆的基本要素为圆心和半径,设圆的圆心坐标为A(a,b),半径为r(其中a,b,r都是常数),r0.设M(x,y)为这个圆上一点,那么点M满足的条件是(引导学生自己列出),由两点间的距离公式让学生写出点M适合的条件①化简可得:2②2引导学生自己证明为圆的方程,得出结论:方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫圆的标准方程。当圆心在原点时,圆的标准方程为。(三)概念辨析,巩固提高例1.写出圆心为A(2,-3),半径等于5的圆的方程,并判断点M是否在这个圆上。分析探究:可以从计算点到圆心的距离入手。探究:点M(1)与圆的关系的判断方法:点在圆外点在圆上点在圆内22222例的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程。分析:从圆的标准方程,可知,要确定圆的标准方程,可用待定系数法确定a,b,r三个参数(学生自己运算解决)例3.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在上,求圆心为C的圆的标准方程。分析:确定一个圆只需要确定圆心位置与半径大小。圆心为C的圆经过点A(1,1),B(2,-2),由于圆心C与A,B两点的距离相等,所以圆心C在线段AB的垂直平分线m上,又圆心C在直线l上,因此圆心C是直线l与直线m的交点,半径长等于CA或CB。总结归纳:(教师归纳,学生自己比较、归纳),比较例2、例3可得出外接圆的标准方程的两种求法:(1).根据题设条件,列出关于a,b,r的方程组,解方程组得到a,b,r的值,写出圆的标准方程;(2).根据确定圆的要求,以及题设条件,分别求出圆心坐标和圆的半径大小,然后写出圆的标准方程。练习:课本P121第1,3,4题(四)小结:1.圆的标准方程的结构特征。2.点与圆的位置关系的判断方法。3.求圆的标准方程的方法:(1)待定系数法;(2)代入法。(五)作业:P120,P121练习1,2,3,4圆的标准方程教学目标【第四篇】圆的标准方程教学目标(一)知识目标1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;2.理解并掌握切线方程的探求过程和方法。(二)能力目标1.进一步培养学生用坐标法研究几何问题的能力;2.通