2011年河南科技大学数学建模竞赛选拔承诺书我们仔细阅读了数学建模竞赛选拔的规则.我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。我们知道,抄袭别人的成果是违反选拔规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。如有违反选拔规则的行为,我们将受到严肃处理。我们选择的题号是(从A/B/C中选择一项填写):C队员签名:1.方健2.孙亚娜3.张腾月日期:2011年8月22日2011年河南科技大学数学建模竞赛选拔编号专用页评阅编号(评阅前进行编号):评阅记录(评阅时使用):评阅人评分备注油库人员的优化配制摘要这篇文章是为了解决某油库人员配置问题的。由于油库工作性质的特殊性,工作人员需要经过合理地调配,油库才能高效的运转。我们讨论的油库中,油库管理者设置了计量与质量检测管理、收发油料管理、装备维护与维修管理、安全保障管理和服务保障管理等5大类岗位,工作项目复杂,类目繁多。因此要进行合理的人员配置优化,才能使油库正常运转。第一题要求各大类均设专职,同类目可兼职。因此我们从人员工作变动入手,建立时间节点序列,从而找出了各约束条件,接着我们采用整数分析法,借助lingo软件来求得最优解。第二题我们用与第一题类似的方法进行求解,只是约束条件更加复杂。我们仍借助lingo软件求最优解。第三题由于约束条件过于繁琐,我们采用模拟退火法进行优化,用matlab软件求得最优解。关键字:整数规划,最优解,目标函数,工作量,优化配置。一、问题重述油库是储存、供应油料及油料装备的重要机构。由于油料是一种易燃、易爆、易挥发、易渗漏,并有一定腐蚀作用的物质。因此,一个油库管理工作要保证正常的运行,必须要设置计量与质量检测管理、收发油料管理、装备维护与维修管理、安全保障管理、服务保障管理等相关的岗位和人员配制。某油库现有不同功能、不同规格的大小储油罐80个,储油量达16万立方米以上,年收发油量达7000多立方米,工作任务十分繁重。根据实际需要按工种分类,油库的工作岗位可以分为5大类:(A)计量与质量检测管理;(B)收发油料管理;(C)设备维护与维修管理;(D)安全保障管理;(E)服务保障管理。由于油库工作的性质要求,每一大类都包括若干个具体的工作岗位,每个岗位都需要数量不等的人员和工作量,附表给出了各类工作岗位、所需要的人员数量和全年的工作量。通常油库的所有人员在保障油库正常运行的条件下,还要参加必要业务学习等活动,所以实际要求每个人全年累积从事油库管理相关工作的总工作量不超过175天(每天按8小时计算),除节假日外,其他时间用于业务学习等活动。请你们研究解决下列问题:(1)根据油库正常的工作任务需要,如果要求(A)、(B)、(C)和(D)类人员都配专职,同类中的各工作岗位人员可以兼职。那么各类工作岗位最少需要配制多少人员?平均年工作量是多少?(2)考虑到人员和编制的问题,有关部门提出除了(A)、(B)两大类专业性较强的工作专职专人外,(C)、(D)两大类在时间允许的情况下可以相互兼职。那么这个油库最少需要多少人员才能保证油库的正常运行?并说明各类人员的年总工作量为多少?(3)如果油库的所有人员都经过了专业的培训,每个人都能从事(A)、(B)、(C)和(D)类中的任何一项工作,每一个岗位都不设专职人员,那么在时间允许的情况下,最少需要多少人员能够保证油库的正常运行?并说明各类人员的年总工作量为多少?(4)你对该油库的岗位和人员的配置、提高油库的管理水平和运行效率等方面有什么合理化建议。附表:油库5大类岗位、需要人员及年工作量二、问题分析问题一的任务要求是通过形成A、B、C、D类各自配有专职,各类工作中配有兼职的工作模式以保证油库各项工作正常进行,同时满足这年总工作量不超过175天,来完成各类工作的人员优化配置求解。因为全为收油和零发油相关的工作,根据问题要求,所有收油与零发油的相关任务依赖于设备操作,其岗位所需的人数固定不变,且必须同时在岗,故本题可把所有收油任务归为一类,所有零发油任务归为一类,且零发油的时间不确定,1且收油和法油的相关的所有任务可以不再同一时刻进行,故可以让收油的工人兼职与零发油的相关工作,所以对于B类就比较容易求得人员配置的最少人数。题中的问题都有涉及有最少人员的求解。由分析可知,A、C、D几项工作中,能明显的判断出C类与D类工作12月份参加工作的人数最多。又知题目要求求解最少配置人数,所以在最多工作人员参与工作的前提下,求解的最少配置人员,才可以保证工作的正常运行。所以对于C类与D类工作选择12月份来进行变动节点的分析更加合理和准确。然而由分析知道,对于A类,由于单双月工作的人数差不多,所以可以考虑单双月来进行模型的建立。对于问题一和二,我们选择整数规划模型来作为求解的最优模型,并利用lingo软件来求解结果。对于问题三我们选择遗传算法来建立模型并用matlab来求解各项工作人员的最小值。三、模型的假设1.零发油操作相关人员限制2.收油相关工作合并3.工作持续执行时间,员工保持不变4.员工能正常工作,不考虑请假问题。5.附表中的信息是2011年的信息。6.员工的工作时间用一天来进行计算,不足一天按一天来计算。四、符号说明a----A类工作单月优化配置的最少人员数'a----A类工作双月优化配置的最少人员数c----C类工作优化配置的最少人员数d----D类工作优化配置的最少人员数----CD类工作优化配置的最少人员数ija----A类工作中第i项工作在jt时刻的在岗人数ijc----C类工作中第i项工作在jt时刻的在岗人数ijd----D类工作中第i项工作在jt时刻的在岗人数ij----CD类工作中第i项工作在jt时刻的在岗人数it----第j个人员的变动节点Af----A项工作岗位上单月需配置的工作人员数'Af----A项工作岗位上双月需配置的工作人员数2Cf----C项工作岗位上需配置的工作人员数Df----D项工作岗位上需配置的工作人员数AiM----A类工作岗位上年总工作量CiM----C类工作岗位上年总工作量DiM----D类工作岗位上年总工作量CDiM----CD类工作岗位上年总工作量五、模型建立与求解问题一前面问题分析中已经说明选择C类12份作为基准来作为人员的变动节点来求解最少人员的数值解。所以首先分析C类工作,来求解各小项任务所需人员的最少人数。由题意可知,为保证油库各项工作的正常进行,同类的各项工作岗位上的人员可以相互兼职,即某工作人员在与自己工作时间不相冲突,且其年总工作量未超过175天时可帮助完成同类工作中的其他工作,进而可使各类工作配置最优人员。C类工作的人员优化配置求解对于C类分析可知,可以明显的看出12月份的工作人员最多,C2的工作时间不确定,C6是单月工作,所以选择C1、C3、C4、C5、C7这五项的工作起始时间作为人员的变动节点,其中将C2、C6的人数闲置处理。查阅2011年的日历,结合上面分析的五项工作起始时间可得人员变动节点序列为{1、2、5、9、10、12、14、15、16、19、23、26、28、30},根据时间变动序列以工作配置的总工作人员最少为目标函数,建立如下的整数规划模型:我们规定C1、C3、C4、C5、C7在j某时刻的在岗人数为1jc、2jc、3jc、4jc、5jc。Subjectto:minccf10,(5)jjc30,(1,2,5,7,8,13)jjc340,(8,9)jjc50,(7,13)jjc152c,2112c,483c312,(1,2,5,7,8,13)jjc52,(7,13)jjc175CcM511412maxijjicc其中:331)2122,11210,(,()jjjjCCttcMccttcM(j=2,3,…14)5598)48494898480,(,()CCttcMccttcM上述模型中,175CcM表示C类工作中所有的员工的年平均总工作量不能超过175天。20jc=表示jt时刻C3项工作已经完成,另外一种情况是没有完成。对于49c道理一样。511412maxijjicc表示对于C612月没有人员工作要加上C2项工作中的两人的人数。按照上述约束条件,我们通过lingo软件(附录1)求得最优解14人。4D类工作的人员优化配置对于D类工作,有D1、D2、D3、D4、D5、D6六项基本工作,经分析,12月份上班人数最多,所以采用和C类相同的办法,以12月份来结合附表上的工作起始时间来确定人员变动节点序列。其中,D2的工作时间不确定,所以将其人数闲置。同时D6项工作需一人工作241天,又知要求是没人的工作量不得超过175天,所以将闲置一人作为专职。所以由D1、D3、D4、D5这四项的工作起始时间作为人员的变动节点。所以可以得到{1,3,5,7,9,10,11,12,13,15,17,19,21,23,25,26,27,29,31},然后建立人员优化的配置模型,其中我们规定,D1、D3、D4、D5在j时刻的在岗人数为1jd、2jd、3jd、4jd所以可得整数规划模型如下:minDdf10,(6)jjd20,(3,8,9,12,16,17)jjd30,(3,8,12,16)jjd40,(6,8,16)jjd166d420,(6,8,16)jjd26,(3,8,12,16)jjd175DdM411917maxijjidd其中,339828292898280,(),()DDttdMddttdM3317162,162,172,1617162,160,(),()DDttdMddttdM5述模型中,175DdM表示D工作中所有的员工的年平均总工作量不能超过175天。290d=表示jt时刻D3工作已经完成,另外一种情况是没有完成。对于2,17d道理一样。411917maxijjidd表示D2闲置的6人加上D6闲置的1人总共7人,然后加上其他所有的最多在岗人数。同样我们通过lingo软件,求得最优解33人。(附录1)A类工作的人员优化配置对A类工作,有A1、A2、A3、A4、A5、A6共计6项具体的工作,经分析,这类工作在单双月中上班的人数差不多,故分别以单双月中这6项工作的起始时间作为人员的变动节点序列,并建立与C类工作人员优化配制相同的整数规划模型。(1)A类的单月的人员优化配置单月的人员变动节点序列是10,15,25A类工作在单月的人员优化配制模型如下:minAafSubjectto10,(3)jja20,(1)jja30,(1)jja132a222a6312a175AaM3131maxijjiaa其中,333222232232220,(),()AAttaMaattaM求得结果:最优解为3人。(2)A类双月的人员优化配置双月的人员变动节点为{1,10,25},所以在双月的人员优化配置如下:''minAaf10,(3)jja20,(1)jja30,(2)jja40,(2)jja132a212a7322a422a175AaM4131'maxijjiaa通过lingo软件可求得最优解:单月为3人,双月为4人。(附录1)因此,A类应具备最少人数4人。B类的人员优化配置B类工作是依赖于设备的收发油的相关工作,其岗位所需的人数固定不变,且必须同时在岗,所以,把所有收油任务归为一类,所有发油任务归为一类,且收油发油的工作可以不在同一时间进行,所以让收油工人代替发油工人工作,可得知与收油相关的需要的最少工作人员是23人