好文供参考!1/18七年级数学下册教案【5篇】【引读】这篇优秀的文档“七年级数学下册教案【5篇】”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!七年级数学下册教案【第一篇】人教版七年级数学下册《平方根》教学设计PPT课件导学案教案课题:平方根(1)教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3、通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。教学难点根据算术平方根的概念正确求出非负数的算术平方根。知识重点算术平方根的概念。教学过程(师生活动)设计理念情境导入同学们,20xx年10月15日,这是我们好文供参考!2/18每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度(米/秒)而小于第二宇宙速度:(米/秒).、的大小满足。怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题(问题略),然后提出问题:你是怎样算出画框的边长等于5dm的呢?(学生思好文供参考!3/18考并交流解法)这个问题相当于在等式扩=25中求出正数x的值.练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是已知正方形的面积求正方形的边长,这与学生以前学过的已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。归纳新知上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式=a(x≥0)中,规定x=。思考:这里的数a应该是怎样的数呢?试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.想一想:下列式子表示什么意思?你能求出它们的值吗?好文供参考!4/18建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根,因为……也可以写成,读作“二次根号a”。算术平方根的概念比较抽象,原因之一是学生对石这个新的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.应用新知例.(课本第160页的例1)求下列各数的算术平方根:(1)100;(2)1;(3);(4)建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使=100,因为例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.探究拓展提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,略;方法2:好文供参考!5/18可还有其他方法,鼓励学生探究。问题:这个大正方形的边长应该是多少呢?大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.教科书在边空提出问题“小正方形的对角线的长是多少”,这是为在10.3节介绍在数轴上画出表示的点做准备.小结与作业课堂小结提问:1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根?布置作业3、必做题:课本第167页习题第1、2、3题;168页第11题。4、备选题:(1)判断下列说法是否正确:i.是25的算术平方根;ii.一6是的算术平方根;iii.0的算术平方根是0;好文供参考!6/18iv.是的算术平方根;⑤一个正方形的边长就是这个正方形的面积的算术平方根.(2)下列各式哪些有意义,哪些没有意义?①-②③④(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.本课教育评注(课堂设计理念,实际教学效果及改进设想)本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的`必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣好文供参考!7/18的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.七年级下册数学教案【第二篇】学习目标(学习重点):1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;2、运用菱形的识别方法进行有关推理。补充例题:例1.如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由。例2.如图,平行四边形ABCD的对角线AC的垂直好文供参考!8/18平分线与边AD、BC分别交于E、F.四边形AFCE是菱形吗?说明理由。例3.如图,ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点(1)试说明四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长;(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形。课后续助:一、填空题1、如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形2、如图,D、E、F分别是△ABC的边BC、CA、AB上的点,且DE∥BA,DF∥CA(1)要使四边形AFDE是菱形,则要增加条件______________________(2)要使四边形AFDE是矩形,则要增加条件______________________二、解答题好文供参考!9/181、如图,在□ABCD中,若2,判断□ABCD是矩形还是菱形?并说明理由。2、如图,平行四边形ABCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.(1)AC,BD互相垂直吗?为什么?(2)四边形ABCD是菱形吗?3、如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问:四边形ABFE是菱形吗?请说明理由。4、如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.⑴求证:ABF≌⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由。七年级下册数学教案【第三篇】一、教材分析1、特点与地位:重点中的重点。本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。好文供参考!10/182、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。(2)难点:求解最短路径算法的程序实现。3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。二、教学目标分析1、知识目标:掌握最短路径概念、能够求解最短路径。2、能力目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。3、素质目标:培养学生讲究工作方法、与他人合好文供参考!11/18作,提高效率。三、教法分析课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。3、课后给学生布置同类型任务,加强练习。五、教学过程分析(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。教学方法及注意事项:(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。(2)提示学生“温故而知新”,养成良好的学习习惯。好文供参考!12/18(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。(三)讲授新课(25~30分钟)1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。③及时总结,原型抽象(景点作为图的结点,景点好文供参考!13/18间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。教学方法及注意事项:①启发式教学,如何实现按路径长度递增产生最短路径?②结合案