大学数学概率论各章节重要考点3篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!大学数学概率论各章节重要考点3篇一、概率论的发展过程一、概率论的发展过程起源概率论是研究随机现象数量规律的数学分支,是一门研究事情发生的可能性的学问。但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺开始研究掷骰子等赌博中的一些简单问题。概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。发展随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和拉普拉斯又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面柯尔莫哥洛夫、维纳、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。二、大学数学概率论各章节重要考点概率与数理统计这门课程从试卷本身的难度的话,在三门课程中应该算最低的,但是从每年得分的角度来说,这门课程是三门课中得分率最低的。下面就由小编为大家带来大学数学概率论各章节重要考点,大家一起去看看怎么做吧!参考资料,少熬夜!大学数学概率论各章节重要考点1第一部分:随机事件和概率(1)样本空间与随机事件(2)概率的定义与性质(含古典概型、几何概型、加法公式)(3)条件概率与概率的乘法公式(4)事件之间的关系与运算(含事件的独立性)(5)全概公式与贝叶斯公式(6)伯努利概型其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,大家一定要引起重视第二部分:随机变量及其概率分布(1)随机变量的概念及分类(2)离散型随机变量概率分布及其性质(3)连续型随机变量概率密度及其性质(4)随机变量分布函数及其性质(5)常见分布(6)随机变量函数的分布其中:要理解分布函数的定义,还有就是常见分布的'分布律抑或密度函数必须记好且熟练。第三部分:二维随机变量及其概率分布(1)多维随机变量的概念及分类(2)二维离散型随机变量联合概率分布及其性质(3)二维连续型随机变量联合概率密度及其性质(4)二维随机变量联合分布函数及其性质(5)二维随机变量的边缘分布和条件分布(6)随机变量的独立性(7)两个随机变量的简单函数的分布其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,一定要重视!第四部分:随机变量的数字特征(1)随机变量的数字期望的概念与性质(2)随机变量的方差的概念与性质(3)常见分布的数字期望与方差(4)随机变量矩、协方差和相关系数其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算第五部分:大数定律和中心极限定理(1)切比雪夫不等式(2)大数定律(3)中心极限定理其中:其实本章考试的可能性不大,最多以选择填参考资料,少熬夜!空的形式,但那也是十年前的事情了。第六部分:数理统计的基本概念(1)总体与样本(2)样本函数与统计量(3)样本分布函数和样本矩其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下第七部分:参数估计(1)点估计(2)估计量的优良性(3)区间估计大学数学概率论各章节重要考点21、随机事件和概率它的重点内容主要是事件的关系和运算,古典概型和几何概型,加法公式、减法公式、乘法公式、全概公式和贝叶斯公式。主要是以客观题的形式考查。今年的考研数学中,数一和数三的一个选择题就考到了事件的关系和概率的问题。2、一维随机变量及其分布这是每年必考的,有单独直接考查,也经常与二维随机变量相结合去考查。重点内容是常见分布,主要是以客观题的形式考查。而今年数一和数三都是以大题的形式考到了常见分布-二项分布和n重伯努利试验的问题。3、二维随机变量重点内容是二维随机变量的概率分布(概率密度)、边缘概率、条件概率和独立性及二维正态分布的性质。二维离散型随机变量的概率分布的建立,主要是结合古典概率进行考查。二维连续型随机变量的边缘概率密度和条件概率密度的'计算,很多考生计算存在误区,一定要注意。而今年数一和数三只考到了二维正态分布的一个性质,还是一个填空题题。4、随机变量的数字特征每年必考,主要和其他知识点相结合来考查,一般是一道客观题和一道解答题中的一问,所以要重点复习。我们要掌握相应的公式进行计算即可,今年数一和数三的一个大题的第二小问考到了随机变量的数字特征,而且还是结合高等数学的无穷级数求和函数来考的,难度稍大。5、数理统计的基本概念此部分主要考两个题型,第一个是判定统计量的分布,第二个常考题型是求统计量的数字特征。常以客观题的形式进行考查。今年数一和数三都考了一个选择题,参考资料,少熬夜!考的是第二个题型就求统计量的数字特征,此题涉及到的知识点,往年已考过多次。6、参数估计这是数一的考试重点,同时它也将成为未来数三的考试重点,所以数三的考生要引起足够的重视。点估计的两种方法即矩估计法和最大似然估计法经常是以解答题的形式进行考查,经常是试卷的最后一道题目。而今年数一和数三把点估计的两种方法都考了一遍,占11分。大学数学概率论各章节重要考点3一、概率与数理统计学科的特点(1)研究对象是随机现象高数是研究确定的现象,而概率研究的是不确定的,是随机现象。对于不确定的,大家感觉比较头疼。(2)题型比较固定,解法比较单一,计算技巧要求低一些比如概率的解答题主要考查二维离散型随机变量、二维连续型随机变量、随机变量函数的分布和参数的矩估计、最大似然估计。考生只要掌握了相应的解题方法,计算准确,就可以拿到满分.(3)高数和概率相结合求随机变量的分布和数字特征运用到高数的理论与方法,这也是考研所要求考生所具备的解决问题的综合能力。在复习概率与数理统计的过程中,把握住每章节的考试重点,概率一定能取得好成绩。二、通过各章节来具体分析考试重点第一章随机事件与概率本章需要掌握概率统计的基本概念,公式。其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。1.本章的重点内容:四个关系:包含,相等,互斥,对立;五个运算:并,交,差;四个运算律:交换律,结合律,分配律,对偶律(德摩根律);概率的基本性质:非负性,规范性,有限可加性,逆概率公式;五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;条件概率;利用独立性进行概率计算;·重伯努利概型的计算。近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。2.常见典型题型:参考资料,少熬夜!随机事件的关系运算;求随机事件的概率;综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。第二章随机变量及其分布本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。1.本章的重点内容:随机变量及其分布函数的概念和性质(充要条件);分布律和概率密度的性质(充要条件);八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用;会计算与随机变量相联系的任一事件的概率;随机变量简单函数的概率分布。近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。2.常见典型题型:求一维随机变量的分布律、分布密度或分布函数;一个函数为某一随机变量的分布函数或分布律或分布密度的判定;反求或判定分布中的参数;求一维随机变量在某一区间的概率;求一维随机变量函的分布。第三章多维随机变量的分布在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。二维连续型随机变量的.相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。掌握用随机变量的.独立性的判断的充要条件。最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。1.本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。本章是概率论重点部分之一!应着重对待。2.常见典型题型:求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度;已知部分边缘分布,求联合分布律;求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度;两个或多个随机变量的独立性或相关性的判定或证明;与二维随机变量独立性相关的命题;求两个随机变量的相关系数;求两个随机变量的函数的概率分布或概率密度或在某参考资料,少熬夜!一区域的概率。第四章随机变量的数字特征本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。本章的重点内容:随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数第五章大数定律和中心极限定理本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。本章的重点内容:切比雪夫不等式;大数定律;中心极限定理。第六章数理统计的基本概念重点在于“三大分布、八个定理”以及计算统计量的数字特征。本章的重点内容:总体与样本;样本函数与统计量;样本分布函数和样本矩。第七章参数估计本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。区间估计和假设检验只有数一的同学要求,考题中较少涉及到。本章的重点内容:点估计;估计量的优良性;区间估计;假设检验的基本概念;单正态总体的均值和方差的假设检验;双正态总体的均值和方差的假设检验。

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功