参考资料,少熬夜!八年级数学教案【精编4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“八年级数学教案【精编4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!八年级数学教案【第一篇】教学任务分析教学目标知识技能一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.数学思考在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.解决问题一、会进行同分母和异分母分式的加减运算.二、会解决与分式的加减有关的简单实际问题.三、能进行分式的加、剪、乘、除、乘方的混合运算.情感态度通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.重点分式的加减法.难点异分母分式的加减法及简单的分式混合运算.教学流程安排活动流程图活动内容和目的活动1:问题引入活动2:学习同分母分式的加减活动3:探究异分母分式的加减活动4:发现分式加减运算法则活动5:巩固练习、总结、作业向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.参考资料,少熬夜!回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.通过练习、作业进一步巩固分式的运算.课前准备教具学具补充材料课件教学过程设计问题与情境师生行为设计意图[活动1]1.问题一:比较电脑与手抄的录入时间.2.问题二;帮帮小明算算时间所需时间为,如何求出的值?3.这里用到了分式的加减,提出本节课的主题.教师通过课件展示问题.学生积极动脑解决问题,提出困惑:分式如何进行加减?通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.[活动2]1.提出小学数学中一道简单的分数加法题目.2.用课件引导学生用类比法,归纳总结同分母分式加法法则.3.教师使用课件展示[例1]4.教师通过课件出两个小练习.教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.学生在教师的引导下,探索同分母分式加减的运算方法.通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.由两个学生板书自主完成练习,教师巡视指导学生练习.运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.参考资料,少熬夜!让学生进一步体会同分母分式的加减运算.[活动3]1.教师()以练习的形式通过“自我发展的平台”,向学生展示这样一道题.2.教师提出思考题:异分母的分式加减法要遵守什么法则呢?教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.[活动4]1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.2.教师使用课件展示[例2]3.教师通过课件出4个小练习.4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式;试用含有R1的式子表示总电阻R5.教师使用课件展示[例4]教师提出要求,由学生说出分式加减法则的字母表示形式.通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.让学生体会运用的公式解决问题的过程.锻炼学生运用法则解决问题的能力,既准确又有速度.提高学生的计算能力.通过分式在物理学中的应用,加强了学科之间的联参考资料,少熬夜!系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.提高学生综合应用知识的能力.[活动5]1、教师通过课件出2个分式混合运算的小练习.2、总结:a)这节课我们学习了哪些知识?你能说一说吗?b)⑴方法思路;c)⑵计算中的主意事项;d)⑶结果要化简.3、作业:a)教科书习题第4、5、6题.学生练习、巩固.教师巡视指导.学生完成、交流.,师生评价.教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.教师布置作业.锻炼学生运用法则进行运算的能力,提高准确性及速度.提高学生归纳总结的能力.八年级数学教案【第二篇】一、教学目标知识与技能1、了解立方根的概念,初步学会用根号表示一个数的立方根。2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根。过程与方法1让学生体会一个数的立方根的惟一性。2培养学生用类比的思想求立方根的能力,体会立方与开立方运算的互逆性,渗透数学的转化思想。情感态度与价值观通过立方根符号的引入体会数学的简洁美。二、重点难点重点立方根的概念和求法。难点立方根与平方根的区别,立方根的求法三、学情分析前面已经学过了平方根的知识,由于平方根与立方根的学习有很多相似之处,所以在教学设计上,主要还是采取类比的思想,在全面回顾平方根的基础上,再来参考资料,少熬夜!引导学生进行立方根知识的学习,让学生感觉到其实立方根知识并不难,可以与平方根知识对比着学,这样可以克服学生学习新知识的陌生心理。在学习方法上,提倡让学生在反思中学习,在概念的得出,归纳性质,解题之后都要进行适当的反思,在反思中看待与理解新知识和新问题,会更理性和全面,会有更大的进步。四、教学过程设计教学环节问题设计师生活动备注情境创设问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是多少?设这种包装箱的边长为xm,则=27这就是求一个数,使它的立方等于27.因为=27,所以x=3.即这种包装箱的边长应为3m归纳:立方根的概念:创设问题情境,引起学生学习的兴趣,经小组讨论后引出概念。通过具体问题得出立方根的概念探究一:根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?因为(),所以的立方根是()因为(),所以-8的立方根是()因为(),所以-的立方根是()因为(),所以0的立方根是()一个正数有一个正的立方根0有一个立方根,是它本身一个负数有一个负的立方根任何数都有唯一的立方根总结归纳一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。。探究二:因为所以=因为,所以=总结:利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。八年级数学的教案【第三篇】教学目标:1、知道负整数指数幂=(a≠0,n是正整数)。参考资料,少熬夜!2、掌握整数指数幂的运算性质。3、会用科学计数法表示小于1的数。教学重点:掌握整数指数幂的运算性质。难点:会用科学计数法表示小于1的数。情感态度与价值观:通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题。教学过程:一、课堂引入1、回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:am?an=am+n(m,n是正整数);(2)幂的乘方:(am)n=amn(m,n是正整数);(3)积的乘方:(ab)n=anbn(n是正整数);(4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,mn);(5)商的乘方:()n=(n是正整数);2、回忆0指数幂的规定,即当a≠0时,a0=1.3、你还记得1纳米=10?9米,即1纳米=米吗?4、计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,mn)中的mn这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立。事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的。三、科学记数法:我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:=×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如=×10?2,=×10?3,=×10?4,以此发现其中的规律,从而有=×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.八年级数学教案【第四篇】参考资料,少熬夜!创设情境1、什么叫平行四边形?平行四边形有什么性质?2、将以上的性质定理,分别用命题形式叙述出来。根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?探究归纳平行四边形的判定方法:证明:两组对边分别相等的四边形是平行四边形已知:求证:做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的木条成为对边。它是平行四边形吗?学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形练习:如图,在ABCD中,E,F,G和H分别是各边中点。求证:四边形EFGH为平行四边形