有理数总结【范例5篇】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!有理数总结【范例5篇】【前言导读】刀客网友为您整理编辑的“有理数总结【范例5篇】”精选优质范文,供您参考学习,希望对您有所帮助,喜欢就下载支持呢!初中数学知识点有理数总结【第一篇】初中数学知识点有理数总结1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。(2)正数和负数表示相反意义的量。2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。4、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。5、有理数加法(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的'绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.(3)一个数同零相加,仍得这个数.加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)6、有理数减法:减去一个数,等于加上这个数的相反数。7、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”8、有理数的乘法两个数相乘,同号得正,异号得负,再把绝对值相参考资料,少熬夜!乘;任何数与0相乘都得0。第一步:确定积的符号第二步:绝对值相乘9、乘积的符号的确定几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。10、倒数:乘积为1的两个数互为倒数,0没有倒数。正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)倒数是本身的只有1和-1。七年级数学有理数知识点总结【第二篇】正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数(negativenumber)。与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。整数和分数统称有理数(rationalnumber)。通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。数轴三要素:原点、正方向、单位长度。在直线上任取一个点表示数0,这个点叫做原点(origin)。只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。3.一个数同0相加,仍得这个数。有理数减法法则:减去一个数,等于加这个数的相参考资料,少熬夜!反数。有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。乘积是1的两个数互为倒数。有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。初中数学有理数知识总结【第三篇】初中数学有理数知识总结有理数(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数:0和正整数。a>0,a是正数;a<0,a是负数;a≥0,a是正数或0,a是非负数;a≤0,a是负数或0,a是非正数。有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用参考资料,少熬夜!较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的'结合律:(a+b)+c=a+(b+c)。9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac。有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n。初中数学有理数知识点总结【第四篇】初中数学有理数知识点总结1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。(2)正数和负数表示相反意义的量。2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。(2)相反数:符号不同、绝对值相等的两个数互为相反数。若a、b互为相反数,则a+b=0;参考资料,少熬夜!相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。(3)绝对值最小的数是0;绝对值是本身的数是非负数。任何数的绝对值是非负数。最小的正整数是1,最大的'负整数是-1。5、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。6、有理数加法(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.(3)一个数同零相加,仍得这个数.加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)7、有理数减法:减去一个数,等于加上这个数的相反数。8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”9、有理数的乘法两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。第一步:确定积的符号第二步:绝对值相乘10、乘积的符号的确定几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。11、倒数:乘积为1的两个数互为倒数,0没有倒数。正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)倒数是本身的只有1和-1。有理数七年级数学知识点总结【第五篇】有理数七年级数学知识点总结参考资料,少熬夜!一、目标与要求1、了解正数与负数是从实际需要中产生的。2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。3、理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;4、了解倒数概念,会求给定有理数的倒数;5、通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法二、重点正、负数的概念;正确理解数轴的概念和用数轴上的点表示有理数;有理数的加法法则;除法法则和除法运算。三、难点负数的`概念、正确区分两种不同意义的量;数轴的概念和用数轴上的点表示有理数;异号两数相加的法则;根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功