写作好帮手1/19初二数学教案(精编5篇)【导读】这篇文档“初二数学教案(精编5篇)”由三一刀客最美丽善良的网友为您分享整理的,供您参考学习,希望这篇文档对您有所帮助,喜欢就分享给朋友们下载吧!初二数学教案1教学目标1、使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;2、培养学生观察能力,提高他们分析问题和解决问题的能力;3、使学生初步养成正确思考问题的良好习惯、教学重点和难点一元一次方程解简单的应用题的方法和步骤、课堂教学过程设计一、从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性写作好帮手2/19呢?为了回答上述这几个问题,我们来看下面这个例题、例1某数的3倍减2等于某数与4的和,求某数、(首先,用算术方法解,由学生回答,教师板书)解法1:(4+2)÷(3-1)=3、答:某数为3、(其次,用代数方法来解,教师引导,学生口述完成)解法2:设某数为x,则有3x-2=x+4、解之,得x=3、答:某数为3、纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一、我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系、因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程、本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤、二、师生共同分析、研究一元一次方程解简单应用写作好帮手3/19题的方法和步骤例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?师生共同分析:1、本题中给出的已知量和未知量各是什么?2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3、若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42500,所以x=50000、答:原来有50000千克面粉、此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样写作好帮手4/19的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应注意模仿、依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意、即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);(3)根据相等关系,正确列出方程、即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案、这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义、例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3写作好帮手5/19个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)解:设第一小组有x个学生,依题意,得3x+9=5x-(5-4),解这个方程:2x=10,所以x=5、其苹果数为3×5+9=24、答:第一小组有5名同学,共摘苹果24个、学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1、买4本练习本与3支铅笔一共用了1、24元,已知铅笔每支0、12元,问练习本每本多少元?2、我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元、求1978年末的储蓄存款、3、某工厂女工人占全厂总人数的35%,男工比女写作好帮手6/19工多252人,求全厂总人数、四、师生共同小结首先,让学生回答如下问题:1、本节课学习了哪些内容?2、列一元一次方程解应用题的方法和步骤是什么?3、在运用上述方法和步骤时应注意什么?依据学生的回答情况,教师总结如下:(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案、其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆、五、作业1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3、某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台、这家工厂前年10月生产电视机多少台?4、大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉、求每个小箱子里装有洗衣粉多少千克?写作好帮手7/195、把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元、求得到一等奖与二等奖的人数数学初二教案2一、教学目标1、了解二次根式的意义;2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3、掌握二次根式的性质和,并能灵活应用;4、通过二次根式的计算培养学生的逻辑思维能力;5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围。难点:确定二次根式中字母的取值范围。三、教学方法启发式、讲练结合。四、教学过程(一)复习提问1、什么叫平方根、算术平方根?2、说出下列各式的意义,并计算:写作好帮手8/19通过练习使学生进一步理解平方根、算术平方根的概念。观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,表示的是算术平方根。(二)引入新课我们已遇到的这样的式子是我们这节课研究的内容,引出:新课:二次根式定义:式子叫做二次根式。对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的外在形态。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。例1当a为实数时,下列各式中哪些是二次根式?写作好帮手9/19分析:,,,、、、四个是二次根式。因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0例2x是怎样的实数时,式子在实数范围有意义?解:略。说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义。例3当字母取何值时,下列各式为二次根式:(1)(2)(3)(4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式。(2)-3x0,x0,即x0时,是二次根式。(3),且x0,x0,当x0时,是二次根式。(4),即,故x-20且x-20,x2.当x2时,是二次根式。例4下列各式是二次根式,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。写作好帮手10/19即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。解:(1)由2a+30,得。(2)由,得3a-10,解得。(3)由于x取任何实数时都有|x|0,因此,|x|+,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1、式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式。2、式子中,被开方数(式)必须大于等于零。(四)练习和作业练习:1、判断下列各式是否是二次根式分析:(2)中,,是二次根式;(5)是二次根式。因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义。是怎样的实数时,下列各式在实数范围内有意义?五、作业写作好帮手11/19教材习题;A组1;B组1.六、板书设计数学初二教案3教学目标1、初步掌握频率分布直方图的概念,能绘制有关连续型统计量的直方图;2、让学生进一步经历数据的整理和表示的过程,掌握绘制频率分布直方图的方法;教学重点掌握频率分布直方图概念及其应用;教学难点绘制连续统计量的直方图教学过程Ⅰ.提出问题,创设情境,引入新课:问题:我们班准备从63名同学中挑选出身高相差不多的40名同学参加比赛,那么这个想法可以实现吗?应该选择身高在哪个范围的学生参加?63名学生的身高数据如下:158158160168159159151158159168158154158154169158158158159167170153160160159159160写作好帮手12/19149163163162172161153156162162163157162162161157157164155156165166156154166164165156157153165159157155164156解:(确定组距)最大值为172,最小值为149,他们的差为23(身高x的变化范围在23厘米,)(分组划记)频数分布表:身高(x)划记频数(学生人数)149≤x152≤x155≤x158≤x161≤164≤x167≤x170≤x从表中看,身高在155≤x(绘制频数分布直方图如课本P72图)探究:上面对数据分组时,组距取3,把数据分成8个组,如果组距取2或4,那么数据应分成几个组,这样做能否选出身高比较整齐的队员?分析:如果组距取2,那么分成12组;如果组距取4,那么分成6组。都可以选出身高比较整齐的队员。归纳:组距和组数的确定没有固定的标准,要凭借经验和研究的具体问题来决定,通常数据越多,分成的组数也越多,当数据在100个以内时,根据数据的多少通常分为5~12个组。写作好帮手13/19我们还可以用频数折线图来描述频数分布的情况。频数折线图可以在频数分布直方图的基础上画出来。首先取直方图中每一个长方形上边的中草药点,然后在横轴上取两个频数为0的点,在上方图的左边取(147、5,0),在直方图的右边取点(174、5,0),将这些点用线段依次连接起来,就得到频数折线图。频数折线图也可以不通过直方图直接画出。根据表,求了各个小组两个端点的平均数,而这些平均数称为组中值,用横轴表示身高(组中值),用纵轴表示频数,以各小组的组中值为横坐标,各小组对应的频数为纵坐标描点,另外再在横轴上取两个点,依次连接这些点,就得到频数分布折线图如课本P73图。II课堂小结:(1)怎样制作频数分布直方图和频数分布折线图(2)组距和组数没有确定标准,当数据在1000个以内时,通常分成5~12组(3)如果取个长方形上边的中点,可以得到频数折线图(4)求各小组两个断点的平均数,这些平均数叫组中值。初二数学教案4写作好帮手14/1