高中数学 数列教案优秀4篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!高中数学数列教案优秀4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“高中数学数列教案优秀4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高三数学数列教案【第一篇】如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。(1)等比数列的通项公式是:An=A1×q^(n-1)若通项公式变形为an=a1/q-q^n(n∈N-),当q0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q-q^x上的一群孤立的点。(2)任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。(5)等比求和:Sn=a1+a2+a3+。.。.。.。+an①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)②当q=1时,Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。高中数学数列教案【第二篇】一、概述教材内容:等比数列的概念和通项公式的推导及简单应用教材难点:灵活应用等比数列及通项公式解决一般问题教材重点:等比数列的概念和通项公式二、教学目标分析1.知识目标1)2)掌握等比数列的定义理解等比数列的通项公式及其推导参考资料,少熬夜!2.能力目标1)学会通过实例归纳概念2)通过学习等比数列的通项公式及其推导学会归纳假设3)提高数学建模的能力3、情感目标:1)充分感受数列是反映现实生活的模型2)体会数学是来源于现实生活并应用于现实生活3)数学是丰富多彩的而不是枯燥无味的三、教学对象及学习需要分析1、教学对象分析:1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。2)对归纳假设较弱,应加强这方面教学2、学习需要分析:四。教学策略选择与设计1.课前复习1)复习等差数列的概念及通向公式2)复习指数函数及其图像和性质2.情景导入高中数学数列教案【第三篇】第一册数列数列教学目标1.理解数列概念,了解数列和函数之间的关系2.了解数列的通项公式,并会用通项公式写出数列的任意一项3.对于比较简单的数列,会根据其前几项写出它的个通项公式4.提高观察、抽象的能力.教学重点1.理解数列概念;2.用通项公式写出数列的任意一项.教学难点根据一些数列的前几项抽象、归纳数列的通项公式.教学方法发现式教学法教具准备投影片l张(内容见下页)教学过程参考资料,少熬夜!(1)复习回顾师:在前面第二章中我们一起学习了有关映射与函数的知识,现在我们再来回顾一下函数的定义.生:(齐声回答函数定义).师:函数定义(板书)如果A、B都是非空擞集,那么A到B的映射就叫做A到B的函数,记作:,其中(Ⅱ)讲授新课师:在学习第二章的基础上,今天我们一起来学习第三章数列有关知识,首先我们来看一些例子。(放投影片)4,5,6,7,8,9,10.①②1,,,,….③1,,,,4,….④-1,1,-1,1,-1,1,….⑤2,2,2,2,2,师:观察这些例子,看它们有何共同特点?(启发学生发现数列定义)生:归纳、总结上述例子共同特点:1.均是一列数;2.有一定次序师:引出数列及有关定义一、定义1.数列:按一定次序排列的一列数叫做数列;2.项:数列中的每一个数都叫做这个数列的项。各项依次叫做这个数列的第1项(或首项)。第2项,…,第n项…。如:上述例子均是数列,其中例①:“4”是这个数列的第1项(或首项)“9”是这个数列的第6项。3.数列的一般形式:,或简记为,其中是数列的第n项生:综合上述例子,理解数列及项定义如:例②中,这是一个数列,它的首项是“1”,“”是这个数列的第“3”项,等等。师:下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:项↓↓↓↓↓序号12345参考资料,少熬夜!师:看来,这个数的第一项与这一项的序号可用一个公式:来表示其对应关系即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项生:结合上述其他例子,练习找其对应关系如:数列①:=n+3(1≤n≤7)数列③:≥1)数列⑤:n≥1)4.通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。师:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N+(或它的有限子集的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式。师:对于函数,我们可以根据其函数解析式画出其对应图象。看来,数列也可根据其通项公式来函出其对应图象,下面同学们练习画数列①②的图象。生:根据扭注通项公式画出数列①,②的图象,并总结其特点。图3?1特点:它们都是一群弧立的点5.有穷数列:项数有限的数列6.无穷数列:项数无限的数列二、例题讲解高三数学数列教案【第四篇】证明数列是等比数列an=(2a-6b)n+6b当此数列为等比数列时,显然是常数列,即2a-6b=0这个是显然的东西,但是我不懂怎么证明常数列吗。所以任何一个K和M都应该有ak=amak=(2a-6b)k+6bam=(2a-6b)m+6bak-am=(2a-6b)(k-m)因为ak-am恒为0km任意所以一定有2a-6b=0即a=3b补充回答:题目条件看错,再证明当此数列为等比数列时2a-6b=0因为等比a3:a2=a2:a1即(6a-12b)-2a=(4a-6b)^2a^2-6ab+9b^2=0即(a-3b)^2=0所以肯定有a=3b成立参考资料,少熬夜!2数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3.。.。.。)证明(1)(Sn/n)是等比数列(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn即nS(n+1)-nSn=(n+2)SnnS(n+1)=(n+2)Sn+nSnnS(n+1)=(2n+2)SnS(n+1)/(n+1)=2Sn/n即S[(n+1)/(n+1)]/[Sn/n]=2S1/1=A1=1所以Sn/n是以2为公比1为首项的等比数列2、由1有Sn/n是以2为公比1为首项的等比数列所以Sn/n的通项公式是Sn/n=1-2^(n-1)即Sn=n2^(n-1)那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)An=Sn-S(n-1)=n2^(n-1)-(n-1)2^(n-2)=n-2-2^(n-2)-(n-1)2^(n-2)=[2n-(n-1)]-2^(n-2)=(n+1)2^(n-2)=(n+1)-2^n/2^2=(n+1)2^n/4=S(n+1)/4所以有S(n+1)=4Ana(n)-a(n-1)=2(n-1)上n-1个式子相加得到:an-a1=2+4+6≤≥+8+。.。.。2(n-1)右边是等差数列,且和=[2+2(n-1)](n-1)/2=n(n-1)所以:an-2=n^2-nan=n^2-n+24、已知数列{3-2的N此方},求证是等比数列根据题意,数列是3-2^n(^n表示肩膀上的方次),n=1,2,3,。.。为了验证它是等比数列只需要比较任何一项和它相邻项的比值是一个不依赖项次的`固定比值就可以了。所以第n项和第n+1项分别是3-2^n和3-2^(n+1),相比之后有:[3-2^(n+1)]/(3-2^n)=2因为比值是2,不依赖n的选择,所以得到结论。5参考资料,少熬夜!数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3.。.。.。)证明(1)(Sn/n)是等比数列(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn即nS(n+1)-nSn=(n+2)SnnS(n+1)=(n+2)Sn+nSnnS(n+1)=(2n+2)SnS(n+1)/(n+1)=2Sn/n即S[(n+1)/(n+1)]/[Sn/n]=2S1/1=A1=1所以Sn/n是以2为公比1为首项的等比数列2、由1有Sn/n是以2为公比1为首项的等比数列所以Sn/n的通项公式是Sn/n=1-2^(n-1)即Sn=n2^(n-1)那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)An=Sn-S(n-1)

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功