高一数学下册教案(精编3篇)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

好范文解忧愁1/10高一数学下册教案(精编3篇)【前言】本站网友为您精挑细选分享的优秀文档“高一数学下册教案(精编3篇)”以供您参考学习使用,希望这篇文档对您有所帮助,喜欢的话就分享给朋友们一起学习吧!高一下册数学教案1一、教材结构与内容简析1本节内容在全书及章节的地位:《向量》出现在高中数学第一册(下)第五章第1节。本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。2数学思想方法分析:(1)从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。(2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。二、教学目标根据上述教材结构与内容分析,考虑到学生已有的好范文解忧愁2/10认知结构心理特征,制定如下教学目标:1基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。3创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。4个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。三、教学重点、难点、关键重点:向量概念的引入。难点:“数”与“形”完美结合。关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。四、教材处理建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知好范文解忧愁3/10识体。本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。五、教学模式教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和全体学生积极参与下,进行集体认识的过程。教为主导,学为主体,又互为客体。启动学生自主性学习,启发引导学生实践数学思维的过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。六、学习方法1、让学生在认知过程中,着重掌握元认知过程。2、使学生把独立思考与多向交流相结合。高一下册数学教案2教学目标:1、结合实际问题情景,理解分层抽样的必要性和重要性;2、学会用分层抽样的方法从总体中抽取样本;3、并对简单随机抽样、系统抽样及分层抽样方法好范文解忧愁4/10进行比较,揭示其相互关系。教学重点:通过实例理解分层抽样的方法。教学难点:分层抽样的步骤。教学过程:一、问题情境1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是。即40,32,28。好范文解忧愁5/10三、建构数学1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应()用。高一数学下册教案3课型:新授课教学目标:知识与技能1、正确理解直线的倾斜角和斜率的概念.2、理解直线的倾斜角的唯一性。3、理解直线的斜率的存在性。好范文解忧愁6/104、斜率公式的推导过程,掌握过两点的直线的斜率公式.情感态度与价值观1、通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.2、通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.重点与难点:直线的倾斜角、斜率的概念和公式。教学方法:启发、引导、讨论。教学过程:1、直线的倾斜角的概念我们知道,经过两点有且只有(确定)一条直线。那么,经过一点P的直线l的位置能确定吗?如图,过一点P可以作无数多条直线a,b,c,…易见,答案是否定的这些直线有什么联系呢?(1)它们都经过点P.(2)它们的‘倾斜程度’不同。怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴好范文解忧愁7/10正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α=0°。问:倾斜角α的取值范围是什么?0°≤α<180°。当直线l与x轴垂直时,α=90°。因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后,我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度。直线a∥b∥c,那么它们的倾斜角α相等吗?答案是肯定的所以一个倾斜角α不能确定一条直线。确定平面直角坐标系内的一条直线位置的几何要素:一个点P和一个倾斜角α。2、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑵当直线l与x轴垂直时,α=90°,k不存在。由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。好范文解忧愁8/10例如,α=45°时,k=tan45°=1;α=135°时,k=tan135°=tan(180°-45°)=-tan45°=-1.学习了斜率之后,我们又可以用斜率来表示直线的倾斜程度。3、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示:直线P1P2的四种情况,并引导学生如何作辅助线,共同完成斜率公式的推导。(略)斜率公式:对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α=90,直线与x轴垂直;(2)k与P1、P2的顺序无关,即y1,y2和x1,x2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y1=y2时,斜率k=0,直线的倾斜角α=0°,直线与x轴平行或重合。(5)求直线的倾斜角可以由直线上两点的坐标先好范文解忧愁9/10求斜率而得到.4.例题:例1已知A(3,2),B(-4,1),C(0,-1),求直线AB,BC,CA的斜率,并判断它们的倾斜角是钝角还是锐角。略解:直线AB的斜率k1=1/70,所以它的倾斜角α是锐角;直线BC的斜率k2=-直线CA的斜率k3=10,所以它的倾斜角α是锐角。例2在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2,及-3的直线a,b,c,l.分析:要画出经过原点的直线a,只要再找出a上的另外一点M.而M的坐标可以根据直线a的斜率确定;或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x轴的正半轴为角的一边,在x轴的上方作45°的角,再把所作的这一边反向延长成直线即可。略解:设直线a上的另外一点M的坐标为(x,y),根据斜率公式有1=(y-0)/(x-0),所以x=y可令x=1,则y=1,于是点M的坐标为(1,1)。此时过原点和点M(1,1),可作直线a.同理,可作直线b,c,l.(用计算机作动画演示画直线过程)好范文解忧愁10/105.练习:P861.2.3.4.课堂小结:(1)直线的倾斜角和斜率的概念.(2)直线的斜率公式。课后作业:P89习题1.2.课后记:

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功