初中数学教学工作总结范文及分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

初中数学教学工作总结范文及分析【导读】这篇文档“初中数学教学工作总结范文及分析”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!初中数学教学案例分析【第一篇】初中数学教学案例分析传统的课程理念认为:教师讲得越多越好,因此在课堂上教师总是尽量讲深讲透,生怕遗漏,将讲整理好的数学呈现给学生;学生则是被动的吸收,机械的记忆,重复的练习。《初中数学新课程标准》也要求教学的变革,那么我们首先要在理念上更新,明确。下面我就想以一些数学教学案例为例,就新课程标准下的部分课堂环节进行一些探讨:1、导入随着课改的深入,教师的新课导入设计形式多样,精彩纷呈,逐步体现出新课程理念,但是也有一些过于形式化,牵强附会。有个老师是以生活情境导入的:班上要举行联欢会,生活委员小明去市场买一种水果,价格为每公斤9.8元,现称出水果10.2公斤,小明随即报出了要付现金99.96元,你知道小明为什么算得这么快吗?说说你的理由。导入材料呈现后,教师让学生对上述问题发表看法,学生积极发言,有人说小明是神童,有人说小明用了计算器,等等。为了弄清小明为什么会这么快算出结果,教师让学生翻书阅读,并示意学生安静,但部分学生难以从刚才的讨论中静下来。许多教师都认为,此导入设计从生活中的事例出发让学生感悟数学,符合学生的生活实际,体现了数学来自生活,同时该情境导入设置悬念,能激发学生的学习兴趣。因此认为这种情境导入是有意义的。但事实上,教学效果理想吗?并不理想,问题出在哪呢?上述导入设计使得学生并不清楚自己要学什么?学习内容需要用到什么样的知识和经验,所以学生往往会无从下手,这是难免会产生一些随意的各种各样的想法。其实,上述导入设计的教师没有很好的发挥该导入的作用,不妨将小明的思考过程暴露出来,原来小明是这样计算的:9.8×10.2=(10-0.2)(10+0.2)=100-0.04=99.96。请问,(1)他这样处理正确吗?请验证。(2)这种运算是不是巧合呢?你能举例说明吗?(3)你能写出一般结论吗?并与前面学过的知识进行比较。这样的导入设计就能充分发挥导入材料的作用了。2、合作与探究探究式教学是时下流行的一种教学方法,既能提高学生的各种能力,又能活跃课堂,调节课堂气氛,提高课堂效果。如何才能做到感性探究,理性课堂呢?我们以“垂线”这一节的教学设计为例,进行探讨。上课开始,教师播放一组图片,其中含有垂线形象,简洁明快,且配以舒缓的背景音乐。环节1:动手操作在音乐中,老师说:“我们来做一个数学活动,请大家拿出两支笔,两笔交叉,固定一支笔和焦点,转动另一支笔到你认为的特殊位置停下,举起模型。教师:老师观察大家停下来的位置全都是“十”字的性质,这是为什么呢?学生:两直线互相垂直。教师:在小学时大家对垂直已经有了初步认识,今天我们就来学习与垂直有关的内容—垂线。我们能用什么方法来说明这个位置是真的垂直呢?学生:拿三角板的直角去度量。教师:很好,大家都会解决问题了,大家思考,垂直的关键是……学生思考,大部分都会回答是直角。通过学生动手操作,让学生感受到垂线是随处可见的,利用实物(两支笔)这一动态过程引入,加强直观教学,在逐步探究中使学生对垂直从定量认识深化到定性认识,并为下面过一点作已知直线的垂线的唯一性作铺垫。环节2:观察思考观察生活中的实物,让学生找垂直,验证垂直,相互谈论垂直,从而引出垂直的定义。图片中熟悉的场景,使教学内容贴近学生的生活实际,通过做垂直、找垂直、验证垂直,一系列的探究活动形成了丰富的概念表象。此环节培养学生将背景抽象成数学化的能力。环节3:理解概念(1)定义:当两条直线相交所成的四角中有一个角是直角时,我们就说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,交点叫做垂足。教师引导学生找定义中的关键词,师生共同比较垂直与垂线的区别,强调垂线是一条直线。(2)表示法垂直符号:“⊥”读作“垂直于”如图(教师画出互相垂直的直线图形)(3)应用格式(教师书写出规范的格式)学生接触几何的时间不长,掌握几何概念的学习方法很重要,在感性认识的基础上进行抽象概念的教学,培养学生的抽象概括能力,在原型基础上进行变式,突出概念的本质特征,有利于培养学生的读图、识图能力。用图形、文字、符号三种语言来表示,让学生感受三种数学语言是密不可分的。深化概念(1)两条直线相交,当满足时,则这两条直线相互垂直。学生得出一下一些条件:①有一个角直角②四个角相等③有三个角相等④邻补角相等⑤对顶角互补。教师让学生比较哪种说法条件最简单、学生明白数学定义的简约性,最终都归结为有一个角是直角。设置开放性问题作为探究问题,多角度进行思考,拓展思维空间,但对部分学生也可肯能难度太大,思维跳跃度太快,而且定义的得出是一个逐步抽象逐步简约的过程,这里出现了一次循环,此问题放在定义得出前可能更符合学生的认知规律。(2)如图,找出图中垂直的线段(教师画出一个三角形中的垂线段)教师:观察图形中的垂线出现了两条,那么任意一条直线的垂线有几条呢?(大部分学生回答无数条,有几位学生回答两条)教师:结合大家的经验,任意一条直线的垂直有无数条。本环节的作用是承上启下,显然结论的得出教师操之过急,如不妨让学生尝试一下画一条直线的垂线,结论的得出更自然合理,也有利于培养学生的合情推理能力。初中数学教学案例分析【第二篇】初中数学教学案例分析上传:刘春花更新时间:2012-5-180:05:38初中数学教学案例分析案例标题:《同底数幂的运算》案例情境:数学运算的教学枯燥无味,总是不知如何入手,听了张老师的一节《同底数幂的运算》,大有收获,现与大家分享。老师:现在我要用一道抢答题来考考你们,题目是:(投影)已知三个数2、3、4,你能从中任取两个数组成算式,使其运算结果最大吗?(有人脱口而出3×4=12)老师:(微笑而不作答)想想我们已学过了哪些运算?(停顿)学生1:4的3次方!学生2:不对!应该是3的4次方!(其它同学点头表示赞同)老师:3的4次方进行的是什么运算?这里的3叫做?4叫做?34=?这里的三个数还能组成哪些幂?(老师一句一句问,学生一问一问集体回答)老师:幂也是个数,那幂能否再进行运算?(引入课题:幂的运算)下面我们就利用刚才得到的六个幂(允许重复使用)来研究幂的运算,怎样入手研究呢?我们的研究方法是:(投影)第一步:试验寻找一些形如右图的式子。可先考虑加和减,再看乘和除。第二步:观察(1)你找到了哪些等式?(2)你从这些等式中有什么发现?(3)你能用语言概括你的发现吗?请以小组为单位合作研究。(学生立即展开讨论,大家七嘴八舌,气氛十分热烈,老师在教室里巡视,不时参与小组的讨论。)老师:请各小组将你们的研究成果展示在黑板上。(立即有几位同学拿着草稿纸上黑板去写研究所得)学生3:(板书在黑板上)①2³+24=47②24-24=0学生4:(板书在黑板上)③2³+24=128④3²+3²=2×3²学生5:(板书在黑板上)⑤4³-4³=0⑥4³+4³=2×4³老师:还有没有不同的研究成果?(停顿,确信没有人发言后)这里的六个式子都是等式吗?你有办法验证吗?(有许多学生马上拿出计算器,很快验证得到①③不成立,②④⑤⑥成立)老师:从②④⑤⑥你发现了什么?(学生小声议论)学生6:相同的幂相减一定为0,相同的幂相加就等于2乘以这个幂。老师:回答得非常好!如果将④中的3换成a,就是我们以前学过的合并同类项吧?(学生点头认可)现在我们有了一个研究成果,那就是:相同的幂可以进行加减运算。下面我们继续研究:幂能不能进行乘法运算。仍以小组为单位合作研究,并请小组代表将研究成果展示在黑板上。(学生继续投入讨论,教室里不时传来“你这个不成立,两边不等”,老师仍在教室里巡视,不时参与小组的讨论,恰当给予指点。)学生7:(板书在黑板上)①3²×34=36②2³×24=27③4²×4³=45学生8:(板书在黑板上)④3³×4³=123⑤3²×4²=122老师:这五个等式均成立的吧?(学生齐声回答:成立)两位同学给出的等式好象有点差别,你们看出他们的差别了吗?学生9:①②③每个等式中幂的底数是相同的,④⑤每个等式中幂的指数是相同的。老师:这是个伟大的发现!我们看到①②③都是相同底数的幂在相乘,而④⑤是不同底数的幂在相乘,今天我们先重点来研究相同底数幂相乘即同底数幂的乘法(板书课题:同底数幂的乘法)仔细观察①②③你还能发现什么?学生10:(急不可耐)左边幂的指数相加就等于右边幂的指数。(学生因发现而面露喜色)老师:刚才我们是在计算器的帮助下找到①②③三个等式的,现在你们能不用计算器,告诉我52×56的结果吗?结果用幂表示。(学生脱口而出:等于58)老师:那a²×a³=?说说你的理由。学生11:等于a5.因为a²×a³=a×a×a×a×a=a5.老师:am×an=学生12:am+n.因为am表示m个a相乘,an表示n个a相乘,所以一共有m+n个a相乘。(老师板书:略)老师:用语言如何叙述?师生共同:同底数幂相乘,底数不变,指数相加。老师:这就是同底数幂的乘法法则。下面我们来用一用刚才研究出来的法则。(以下略)案例反思和分析:教育家苏霍姆林斯基说过:“教师如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而是不动情感的脑力劳动,就会带来疲倦,处于疲倦状态下的头脑,是很难有效地吸取知识的。”这就要求我们在课堂教学中,要设置恰当的情景,一开始就吊起学生的胃口。张老师通过学生熟悉但易错的问题入手,让学生在抢答中体会到乘方运算的重要性,同时创设了使学生迫切地想知道幂的运算性质的氛围,激发了学生强烈的学习兴趣。荷兰著名数学教育家弗赖登塔尔强调:“学习数学唯一的方法是实行‘再创造',也就是由学生本人把要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生进行再创造的工作,而不是把现有的知识灌输给学生。”他还认为:“学习数学是人的一种活动,如同游泳一样,要在游泳中学会游泳,我们必须在做数学中学习数学。”这就要求我们在课堂教学中应充分发挥学生的主体性,让学生在亲身实践中去体验、去感悟。在这里,我们看到张老师创造了条件让学生去动手实践,自主探究。通过给出研究问题的方法,使学生在开放的学习情景中经历了发现与再创造的过程,培养了学生的观察能力、猜想能力及探究能力。学生在完全开放的学习情景之中,思维空间更大,更有利于“做数学”,事实上,学生的“做数学”的热情并没有因为同底数幂乘法法则的得出而告结束,在下课前,学生进一步猜想得到:①同底数幂相除,底数不变,指数相减;②同指数幂相乘,底数相乘,指数不变。可见,只有老师创设真正的“做数学”的氛围,才会使学生的“做数学”的积极性不因下课铃声而告终。《数学课程标准》指出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想方法,获得广泛的数学活动的经验。”在这节课中,张教师始终关注对学生研究方法的指导,在让学生就具体的数值,通过比较、猜想,获得了真理的过程中,学生能解决的问题,教师不急于告诉,而只是作一些必要的提示,让学生体验成功;当学生进行讨论时,教师积极参与到小组讨论中去,使小组讨论顺利进行;当出现错误时,老师并不是直接指出,而是让学生去发现错误,从中掌握排除错误的方法,为后续学习打下基础。这些都充分体现出老师对学生在学习过程中的变化和发展,以及在活动中表现出来的情感与态度的关注。因此,在这节课中,虽然“做数学”花的时间很多,但学生的收获必然大得多,真正体现了学生是学习的主人。曾听一位老师说过:“在课堂上,我感谢每一个敢于发言的同学,无论他是答对了还是答错了,我都要说声‘谢谢!',因为他们让我看到了学生对问题的不同理解。”确实,在课堂教学中,我们不仅要对有创新或独特见解的学生表示赞赏,对有错误见解的学生同样不应吝啬我们的真诚。在这节课,我们能听到老师对学生发出的“很好!”“回答得非常好!”等鼓励的话语。特别是张老师还把学生写出的等式称为“研究成果”、归纳出的结论称为“伟大的发现”、当一部分学生展示研究所得后,张老师仍不忘问

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功