好范文解忧愁1/19高中数学教案【范例4篇】【前言】本站网友为您精挑细选分享的优秀文档“高中数学教案【范例4篇】”以供您参考学习使用,希望这篇文档对您有所帮助,喜欢的话就分享给朋友们一起学习吧!高中数学教学设计【第一篇】一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。二、学生学习情况分析我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。三、设计思想由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参好范文解忧愁2/19与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。四、教学目标1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。2、通过对练习,强化对圆锥曲线定义的'理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。3、借助多媒体辅助教学,激发学习数学的兴趣。五、教学重点与难点:教学重点1、对圆锥曲线定义的理解2、利用圆锥曲线的定义求“最值”3、“定义法”求轨迹方程教学难点:巧用圆锥曲线定义解题六、教学过程设计设计思路(一)开门见山,提出问题一上课,我就直截了当地给出——好范文解忧愁3/19例题1:(1)已知A(—2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。(A)椭圆(B)双曲线(C)线段(D)不存在(2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线设计意图定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。学情预设估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以好范文解忧愁4/19利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。(二)理解定义、解决问题例2(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。(2)在(1)的条件下,给定点P(—2,2),求|PA|设计意图运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。学情预设根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1好范文解忧愁5/19的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。(三)自主探究、深化认识如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会练习:设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。引申:若将点A移到圆C外,点M的轨迹会是什么?设计意图练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,可借助“多媒体课件”,引导学生对自己的结论进行验证。知识链接(一)圆锥曲线的定义1、圆锥曲线的第一定义2、圆锥曲线的统一定义(二)圆锥曲线定义的应用举例1、双曲线1的两焦点为F1、F2,P为曲线上一点,好范文解忧愁6/19若P到左焦点F1的距离为12,求P到右准线的距离。2、|PF1||PF2|2。P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。4、(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。(3)已知点P(—2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。七、教学反思1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、好范文解忧愁7/19自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法。循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题。而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。高中数学教案【第二篇】好范文解忧愁8/19教学目标:1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。2、会求一些简单函数的反函数。3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。教学重点:求反函数的方法。教学难点:反函数的概念。教学过程:教学活动设计意图一、创设情境,引入新课1、复习提问①函数的概念②y=f(x)中各变量的意义2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),好范文解忧愁9/19在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。3、板书课题由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。二、实例分析,组织探究1、问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2、问题组二:(1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?好范文解忧愁10/19(2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3、渗透反函数的概念。(教师点明这样的函数即互为反函数,然后师生共同探究其特点)从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近发展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。三、师生互动,归纳定义1、(根据上述实例,教师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)好范文解忧愁11/19的反函数。记作:。考虑到用x表示自变量,y表示函数的习惯,将中的x与y对调写成。2、引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有反函数;4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因。3、两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的)4、函数与其反函数的关系函数y=f(x)函数定义域AC好范文解忧愁12/19值域CA四、应用解题,总结步骤1、(投影例题)例1求下列函数的反函数(1)y=3x—1(2)y=x1例2求函数的反函数。(教师板书例题过程后,由学生总结求反函数步骤。)2、总结求函数反函数的步骤:1°由y=f(x)反解出x=f(y)。2°把x=f(y)中x与y互换得。3°写出反函数的定义域。(简记为:反解、互换、写出反函数的定义域)例3(1)有没有反函数?(2)的反函数是________。(3)(x在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把好范文解忧愁13/19握。通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归https:///纳总结的能力。题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。五、巩固强化,评价反馈1、已知函数y=f(x)存在反函数,求它的反函数y=f(x)(1)y=—2x3(xR)(2)y=—(xR,且x)(3)y=(xR,且x)2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。五、反思小结,再度设疑本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两