八年级上册数学教案人教版【精编4篇】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!八年级上册数学教案人教版【精编4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“八年级上册数学教案人教版【精编4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!人教版八年级上册数学教案【第一篇】教学目标1、知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。2、过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。3、情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。重、难点与关键1、重点:理解完全平方公式因式分解,并学会应用。2、难点:灵活地应用公式法进行因式分解。3、关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。教学过程一、回顾交流,导入新知问题牵引1、分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)知识迁移2、计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.教师活动引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。3、分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.学生活动从逆向思维的角度入手,很快得到下面答参考资料,少熬夜!案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.归纳公式完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学例1把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.例2如果x2+axy+16y2是完全平方,求a的值。思路点拨根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题。探研时空1、已知x+y=7,xy=10,求下列各式的值。(1)x2+y2;(2)(x-y)22、已知x+=-3,求x4+的值。四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。五、布置作业,专题突破八年级上册数学教案人教版【第二篇】《因式分解》教案教学目标:1、理解运用平方差公式分解因式的方法。2、掌握提公因式法和平方差公式分解因式的综合参考资料,少熬夜!运用。3、进一步培养学生综合、分析数学问题的能力。教学重点:运用平方差公式分解因式。教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?①-x2+y2②-x2-y2③4-9x2④(x+y)2-(x-y)2⑤a4-b43、试总结运用平方差公式因式分解的条件是什么?4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?5、试总结因式分解的步骤是什么?师巡回指导,生自主探究后交流合作。生交流热情很高,但把全部问题分析完已用了30分钟。生展示自学成果。生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。生5:a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节参考资料,少熬夜!课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……八年级上册数学教案人教版【第三篇】《矩形》教案教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件。2.提高对矩形的性质和判别在实际生活中的应用能力。过程与方法目标:参考资料,少熬夜!1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。情感与态度目标:1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。2.通过对矩形的探索学习,体会它的内在美和应用美。教学重点:矩形的性质和常用判别方法的理解和掌握。教学难点:矩形的性质和常用判别方法的综合应用。教学方法:分析启发法教具准备:像框,平行四边形框架教具,多媒体课件。教学过程设计:一、情境导入:演示平行四边形活动框架,引入课题。二、讲授新课:1、归纳矩形的定义:问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)结论:有一个内角是直角的平行四边形是矩形。2.探究矩形的性质:(1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答。)结论:矩形的四个角都是直角。(2)探索矩形对角线的性质:让学生进行如下操作后,思考以下问题:(幻灯片展示)在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状。①随着∠α的变化,两条对角线的长度分别是怎样变化的?②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生操作,思考、交流、归纳。)结论:矩形的两条对角线相等。(3)议一议:(展示问题,引导学生讨论解决)参考资料,少熬夜!①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由。②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形。例解:(性质的运用,渗透矩形对角线的“化归”功能)如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4厘米,求BD与AD的长。(引导学生分析、解答)探索矩形的判别条件:(由修理桌子引出)(5)想一想:(学生讨论、交流、共同学习)对角线相等的平行四边形是怎样的四边形?为什么?结论:对角线相等的平行四边形是矩形。(理由可由师生共同分析,然后用幻灯片展示完整过程。)(6)归纳矩形的判别方法:(引导学生归纳)有一个内角是直角的平行四边形是矩形。对角线相等的平行四边形是矩形。三、课堂练习:(出示P98随堂练习题,学生思考、解答。)四、新课小结:通过本节课的学习,你有什么收获?(师生共同从知识与思想方法两方面小结。)五、作业设计:P99习题第1、2、3题。板书设计:1、矩形矩形的定义:矩形的性质:前面知识的小系统图示:2、矩形的判别条件:例1课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。参考资料,少熬夜!人教版八年级上册数学教案【第四篇】一、内容和内容解析1、内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法。2、内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入。学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用。它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备。本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系。二、目标和目标解析1、教学目标(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2、教学目标解析(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念。(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质。(3)掌握三角形的高、中线与角平分线的画法。(4)了解三角形的三条高、三条中线与三

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功