Outline1ùEC¼ê®ÆÔnÆêÆÔn{§|2007cSC.S.Wu1ùEC¼êOutlineùÇ:1Eê9Ù$5KEêµ½ÂEêAÛL«2EêSEêSS43EC¼ê½Â4ëYá:C.S.Wu1ùEC¼êOutlineùÇ:1Eê9Ù$5KEêµ½ÂEêAÛL«2EêSEêSS43EC¼ê½Â4ëYá:C.S.Wu1ùEC¼êOutlineùÇ:1Eê9Ù$5KEêµ½ÂEêAÛL«2EêSEêSS43EC¼ê½Â4ëYá:C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableReferencesÇÂÁ§5êÆÔn{6§11Ùù&§5êÆÔn{6§§1.1,1.2nÎ!X1Á§5êÆÔn{6§§1.1C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableReferencesÇÂÁ§5êÆÔn{6§11Ùù&§5êÆÔn{6§§1.1,1.2nÎ!X1Á§5êÆÔn{6§§1.1C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableReferencesÇÂÁ§5êÆÔn{6§11Ùù&§5êÆÔn{6§§1.1,1.2nÎ!X1Á§5êÆÔn{6§§1.1C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationùÇ:1Eê9Ù$5KEêµ½ÂEêAÛL«2EêSEêSS43EC¼ê½Â4ëYá:C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEê½ÂkékS¢ê(a,b)§le$5Kµ\{(a1,b1)+(a2,b2)=(a1+a2,b1+b2)¦{(a,b)(c,d)=(ac−bd,ad+bc)K¡ùékS¢ê(a,b)½ÂEêαα=(a,b)a¡α¢Ü§b¡αJÜa=Reαb=ImαC.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEê½ÂkékS¢ê(a,b)§le$5Kµ\{(a1,b1)+(a2,b2)=(a1+a2,b1+b2)¦{(a,b)(c,d)=(ac−bd,ad+bc)K¡ùékS¢ê(a,b)½ÂEêαα=(a,b)a¡α¢Ü§b¡αJÜa=Reαb=ImαC.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEê½ÂkékS¢ê(a,b)§le$5Kµ\{(a1,b1)+(a2,b2)=(a1+a2,b1+b2)¦{(a,b)(c,d)=(ac−bd,ad+bc)K¡ùékS¢ê(a,b)½ÂEêαα=(a,b)a¡α¢Ü§b¡αJÜa=Reαb=ImαC.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEê½ÂkékS¢ê(a,b)§le$5Kµ\{(a1,b1)+(a2,b2)=(a1+a2,b1+b2)¦{(a,b)(c,d)=(ac−bd,ad+bc)K¡ùékS¢ê(a,b)½ÂEêαα=(a,b)a¡α¢Ü§b¡αJÜa=Reαb=ImαC.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEê½ÂkékS¢ê(a,b)§le$5Kµ\{(a1,b1)+(a2,b2)=(a1+a2,b1+b2)¦{(a,b)(c,d)=(ac−bd,ad+bc)K¡ùékS¢ê(a,b)½ÂEêαα=(a,b)a¡α¢Ü§b¡αJÜa=Reαb=ImαC.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEê´¢êí2(*¿)¢êaP(a,0)Ïdα=(a,b)=a(1,0)+b(0,1)C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEê´¢êí2(*¿)¢êaP(a,0)Ïdα=(a,b)=a(1,0)+b(0,1)C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEê´¢êí2(*¿)¢êaP(a,0)Ïdα=(a,b)=a(1,0)+b(0,1)C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEêªα=(a,b)=a(1,0)+b(0,1)¿ÂÛ¹EêVgüEê⇐⇒¢Ü!JÜ©O#N`üEêØEêØU'C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEêªα=(a,b)=a(1,0)+b(0,1)¿ÂÛ¹EêVgüEê⇐⇒¢Ü!JÜ©O#N`üEêØEêØU'C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEêªα=(a,b)=a(1,0)+b(0,1)¿ÂÛ¹EêVgüEê⇐⇒¢Ü!JÜ©O#N`üEêØEêØU'C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationEêªα=(a,b)=a(1,0)+b(0,1)¿ÂÛ¹EêVgüEê⇐⇒¢Ü!JÜ©O#N`üEêØEêØU'C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationAÏEê(0,0)——¢ê0(a,b)+(0,0)=(a,b)?ÛEê(0,0)\§ÙØC(a,b)(0,0)=(0,0)?ÛEê(0,0)¦§ð(0,0)C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationAÏEê(0,0)——¢ê0(a,b)+(0,0)=(a,b)?ÛEê(0,0)\§ÙØC(a,b)(0,0)=(0,0)?ÛEê(0,0)¦§ð(0,0)C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationAÏEê(0,0)——¢ê0(a,b)+(0,0)=(a,b)?ÛEê(0,0)\§ÙØC(a,b)(0,0)=(0,0)?ÛEê(0,0)¦§ð(0,0)C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationAÏEê(0,0)——¢ê0(a,b)+(0,0)=(a,b)?ÛEê(0,0)\§ÙØC(a,b)(0,0)=(0,0)?ÛEê(0,0)¦§ð(0,0)C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationAÏEê(0,0)——¢ê0(a,b)+(0,0)=(a,b)?ÛEê(0,0)\§ÙØC(a,b)(0,0)=(0,0)?ÛEê(0,0)¦§ð(0,0)C.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationAÏEê(1,0)——¢ê1(1,0)(a,b)=(a,b)?ÛEê(1,0)¦§ÙØCC.S.Wu1ùEC¼êComplexNumbers&ComplexAlgebraComplexSequenceFunctionofaComplexVariableComplexNumbers:DefinitionGeometricRepresentationAÏEê(1,0)——¢ê1(1,0)(a,b)=(a,b)?ÛEê(1,0)¦§ÙØCC.S.