Outline1ù)Û¼êÔnÆêÆÔn{§|2007cSC.S.Wu1ù)Û¼êOutlineùÇ:1)Û¼ê¼ê)Û52мê¼êê¼ên¼êV¼êC.S.Wu1ù)Û¼êOutlineùÇ:1)Û¼ê¼ê)Û52мê¼êê¼ên¼êV¼êC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsReferencesÇÂÁ§5êÆÔn{6§§2.1—2.3ù&§5êÆÔn{6§§1.4nÎ!X1Á§5êÆÔn{6§§1.2,1.3C.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsReferencesÇÂÁ§5êÆÔn{6§§2.1—2.3ù&§5êÆÔn{6§§1.4nÎ!X1Á§5êÆÔn{6§§1.2,1.3C.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsReferencesÇÂÁ§5êÆÔn{6§§2.1—2.3ù&§5êÆÔn{6§§1.4nÎ!X1Á§5êÆÔn{6§§1.2,1.3C.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityùÇ:1)Û¼ê¼ê)Û52мê¼êê¼ên¼êV¼êC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityêµ½Âw=f(z)´«GSü¼ê§XJ3GS,:zlimΔz→0ΔwΔz=limΔz→0f(z+Δz)−f(z)Δz3§K¡¼êf(z)3z:d4§Pf0(z)§=¡f(z)3z:êC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityêµ½Âw=f(z)´«GSü¼ê§XJ3GS,:zlimΔz→0ΔwΔz=limΔz→0f(z+Δz)−f(z)Δz3§K¡¼êf(z)3z:d4§Pf0(z)§=¡f(z)3z:êC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticity©µ½Âe¼êw=f(z)3z:UCþΔw=f(z+Δz)−f(z)±¤Δw=A(z)Δz+ρ(Δz)Ù¥limΔz→0ρ(Δz)Δz=0K¡w=f(z)3z:§Δw5Ü©A(z)Δz¡¼êw3z:©§Pdw=A(z)dz½dz=ΔzC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticity©µ½Âe¼êw=f(z)3z:UCþΔw=f(z+Δz)−f(z)±¤Δw=A(z)Δz+ρ(Δz)Ù¥limΔz→0ρ(Δz)Δz=0K¡w=f(z)3z:§Δw5Ü©A(z)Δz¡¼êw3z:©§Pdw=A(z)dz½dz=ΔzC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityû±y²§e¼êw=f(z)3z:§K½3T:§½,¶¿ A(z)=f0(z)§=dw=f0(z)dz½dwdz=f0(z)Ïdê¡ûC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityû±y²§e¼êw=f(z)3z:§K½3T:§½,¶¿ A(z)=f0(z)§=dw=f0(z)dz½dwdz=f0(z)Ïdê¡ûC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityû±y²§e¼êw=f(z)3z:§K½3T:§½,¶¿ A(z)=f0(z)§=dw=f0(z)dz½dwdz=f0(z)Ïdê¡ûC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityû±y²§e¼êw=f(z)3z:§K½3T:§½,¶¿ A(z)=f0(z)§=dw=f0(z)dz½dwdz=f0(z)Ïdê¡ûC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityµãf0(z)=limΔz→0f(z+Δz)−f(z)Δz ¤¢limΔz→0(Δw/Δz)3§¿XΔz±?¿ªªu0§Δw/ΔzѪuÓk §eΔz±ØÓªªu0§Δw/ΔzªuØÓ§KlimΔz→0(Δw/Δz)Ø3 AO´§ÄΔz→0ü«Õᪧұ¼ê7^C.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityµãf0(z)=limΔz→0f(z+Δz)−f(z)Δz ¤¢limΔz→0(Δw/Δz)3§¿XΔz±?¿ªªu0§Δw/ΔzѪuÓk §eΔz±ØÓªªu0§Δw/ΔzªuØÓ§KlimΔz→0(Δw/Δz)Ø3 AO´§ÄΔz→0ü«Õᪧұ¼ê7^C.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityµãf0(z)=limΔz→0f(z+Δz)−f(z)Δz ¤¢limΔz→0(Δw/Δz)3§¿XΔz±?¿ªªu0§Δw/ΔzѪuÓk §eΔz±ØÓªªu0§Δw/ΔzªuØÓ§KlimΔz→0(Δw/Δz)Ø3 AO´§ÄΔz→0ü«Õᪧұ¼ê7^C.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityµãf0(z)=limΔz→0f(z+Δz)−f(z)Δz ¤¢limΔz→0(Δw/Δz)3§¿XΔz±?¿ªªu0§Δw/ΔzѪuÓk §eΔz±ØÓªªu0§Δw/ΔzªuØÓ§KlimΔz→0(Δw/Δz)Ø3 AO´§ÄΔz→0ü«Õᪧұ¼ê7^C.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityΔx→0§Δy=0f0(z)=limΔz→0ΔwΔz=limΔx→0Δu+iΔvΔx=∂u∂x+i∂v∂xΔx=0§Δy→0f0(z)=limΔz→0ΔwΔz=limΔy→0Δu+iΔviΔy=∂v∂y−i∂u∂yCauchy-Riemann§∂u∂x=∂v∂y∂u∂y=−∂v∂xC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityΔx→0§Δy=0f0(z)=limΔz→0ΔwΔz=limΔx→0Δu+iΔvΔx=∂u∂x+i∂v∂xΔx=0§Δy→0f0(z)=limΔz→0ΔwΔz=limΔy→0Δu+iΔviΔy=∂v∂y−i∂u∂yCauchy-Riemann§∂u∂x=∂v∂y∂u∂y=−∂v∂xC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityΔx→0§Δy=0f0(z)=limΔz→0ΔwΔz=limΔx→0Δu+iΔvΔx=∂u∂x+i∂v∂xΔx=0§Δy→0f0(z)=limΔz→0ΔwΔz=limΔy→0Δu+iΔviΔy=∂v∂y−i∂u∂yCauchy-Riemann§∂u∂x=∂v∂y∂u∂y=−∂v∂xC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityCauchy-Riemann§∂u∂x=∂v∂y∂u∂y=−∂v∂xCauchy-Riemann§´¼ê7^Ø´¿©^±y²§ef(z)=u(x,y)+iv(x,y)¢Üu(x,y)ÚJÜv(x,y)þ1§ ÷vCauchy-Riemann§§K¼êf(z)1=o ê∂u/∂x,∂u/∂y,∂v/∂xÚ∂v/∂y3 ëYC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityCauchy-Riemann§∂u∂x=∂v∂y∂u∂y=−∂v∂xCauchy-Riemann§´¼ê7^Ø´¿©^±y²§ef(z)=u(x,y)+iv(x,y)¢Üu(x,y)ÚJÜv(x,y)þ1§ ÷vCauchy-Riemann§§K¼êf(z)1=o ê∂u/∂x,∂u/∂y,∂v/∂xÚ∂v/∂y3 ëYC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityCauchy-Riemann§∂u∂x=∂v∂y∂u∂y=−∂v∂xCauchy-Riemann§´¼ê7^Ø´¿©^±y²§ef(z)=u(x,y)+iv(x,y)¢Üu(x,y)ÚJÜv(x,y)þ1§ ÷vCauchy-Riemann§§K¼êf(z)1=o ê∂u/∂x,∂u/∂y,∂v/∂xÚ∂v/∂y3 ëYC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityCauchy-Riemann§∂u∂x=∂v∂y∂u∂y=−∂v∂xCauchy-Riemann§´¼ê7^Ø´¿©^±y²§ef(z)=u(x,y)+iv(x,y)¢Üu(x,y)ÚJÜv(x,y)þ1§ ÷vCauchy-Riemann§§K¼êf(z)1=o ê∂u/∂x,∂u/∂y,∂v/∂xÚ∂v/∂y3 ëYC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityµãÚ¢ê/XJ¼êf(z)3z:§K3z:7ëY´¼ê3,:ëY§¿ØUíѼê3T:$kù¹µ¼ê3,«S??ëY§%??ØC.S.Wu1ù)Û¼êAnalyticFunctionsElementaryFunctionsDifferentiabilityAnalyticityµãÚ¢ê/XJ¼êf(z)3z:§K3z:7ëY´¼ê3,:ëY§¿ØUíѼê3T:$kù¹µ¼ê3,«S??ëY§%??ØC.S.Wu1ù)Û¼êAnalyticFunctionsElementar