北大数学物理方法(A)-复变函数教案04复变积分1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Outline1oùECÈ©(˜)ÔnÆêÆÔn{‘§|2007cSC.S.Wu1oùECÈ©(˜)OutlineùLJ:1ECÈ©ECÈ©½ÂECÈ©Ä5Ÿ2Cauchy½nüëÏ«Cauchy½nؽȩ†¼êEëÏ«Cauchy½n3ü‡k^ÚnÚnµ·^uŒ»Ã¡ lÚnµ·^uŒ»Ã¡Œ lC.S.Wu1oùECÈ©(˜)OutlineùLJ:1ECÈ©ECÈ©½ÂECÈ©Ä5Ÿ2Cauchy½nüëÏ«Cauchy½nؽȩ†¼êEëÏ«Cauchy½n3ü‡k^ÚnÚnµ·^uŒ»Ã¡ lÚnµ·^uŒ»Ã¡Œ lC.S.Wu1oùECÈ©(˜)OutlineùLJ:1ECÈ©ECÈ©½ÂECÈ©Ä5Ÿ2Cauchy½nüëÏ«Cauchy½nؽȩ†¼êEëÏ«Cauchy½n3ü‡k^ÚnÚnµ·^uŒ»Ã¡ lÚnµ·^uŒ»Ã¡Œ lC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasReferencesÇÂÁ§5êÆÔn{6§§3.1—3.4ù&œ§5êÆÔn{6§§2.1—2.3nÎ!X1Á§5êÆÔn{6§§2.1—2.3C.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasReferencesÇÂÁ§5êÆÔn{6§§3.1—3.4ù&œ§5êÆÔn{6§§2.1—2.3nÎ!X1Á§5êÆÔn{6§§2.1—2.3C.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasReferencesÇÂÁ§5êÆÔn{6§§3.1—3.4ù&œ§5êÆÔn{6§§2.1—2.3nÎ!X1Á§5êÆÔn{6§§2.1—2.3C.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesùLJ:1ECÈ©ECÈ©½ÂECÈ©Ä5Ÿ2Cauchy½nüëÏ«Cauchy½nؽȩ†¼êEëÏ«Cauchy½n3ü‡k^ÚnÚnµ·^uŒ»Ã¡ lÚnµ·^uŒ»Ã¡Œ lC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties½ÂµECÈ©´E겡þ‚È©C´E²¡þ­‚§¼êf(z)3Cþk½Â©ò­‚C?¿©n㧩:z0=A,z1,z2,···,zn=B§ζk´zk−1→zkãþ?¿˜:§ŠÚênPk=1f(ζk)(zk−zk−1)≡nPk=1f(ζk)Δzken→∞§¦max|Δzk|→0ž§dÚê43§…†ζkÀÃ'§K¡d4Š¼êf(z)÷­‚CÈ©§PZCf(z)dz=limmax|Δzk|→0nXk=1f(ζk)ΔzkC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties½ÂµECÈ©´E겡þ‚È©C´E²¡þ­‚§¼êf(z)3Cþk½Â©ò­‚C?¿©n㧩:z0=A,z1,z2,···,zn=B§ζk´zk−1→zkãþ?¿˜:§ŠÚênPk=1f(ζk)(zk−zk−1)≡nPk=1f(ζk)Δzken→∞§¦max|Δzk|→0ž§dÚê43§…†ζkÀÃ'§K¡d4Š¼êf(z)÷­‚CÈ©§PZCf(z)dz=limmax|Δzk|→0nXk=1f(ζk)ΔzkC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties½ÂµECÈ©´E겡þ‚È©C´E²¡þ­‚§¼êf(z)3Cþk½Â©ò­‚C?¿©n㧩:z0=A,z1,z2,···,zn=B§ζk´zk−1→zkãþ?¿˜:§ŠÚênPk=1f(ζk)(zk−zk−1)≡nPk=1f(ζk)Δzken→∞§¦max|Δzk|→0ž§dÚê43§…†ζkÀÃ'§K¡d4Š¼êf(z)÷­‚CÈ©§PZCf(z)dz=limmax|Δzk|→0nXk=1f(ζk)ΔzkC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©˜‡ECÈ©¢Sþ´ü‡¢C‚È©kS|ÜZCf(z)dz=ZC(u+iv)(dx+idy)=ZC(udx−vdy)+iZC(vdx+udy)Ïd§XJC´©ã1w­‚§f(z)´CþëY¼ê§KECÈ©˜½3C.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©˜‡ECÈ©¢Sþ´ü‡¢C‚È©kS|ÜZCf(z)dz=ZC(u+iv)(dx+idy)=ZC(udx−vdy)+iZC(vdx+udy)Ïd§XJC´©ã1w­‚§f(z)´CþëY¼ê§KECÈ©˜½3C.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesùLJ:1ECÈ©ECÈ©½ÂECÈ©Ä5Ÿ2Cauchy½nüëÏ«Cauchy½nؽȩ†¼êEëÏ«Cauchy½n3ü‡k^ÚnÚnµ·^uŒ»Ã¡ lÚnµ·^uŒ»Ã¡Œ lC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5Ÿ¶eÈ©ZCf1(z)dz,ZCf2(z)dz,···,ZCfn(z)dzÑ3§KZChf1(z)+f2(z)+···+fn(z)idz=ZCf1(z)dz+ZCf2(z)dz+···+ZCfn(z)dz·eC=C1+C2+···+Cn§KZC1f(z)dz+ZC2f(z)dz+···+ZCnf(z)dz=ZCf(z)dzC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5Ÿ¶eÈ©ZCf1(z)dz,ZCf2(z)dz,···,ZCfn(z)dzÑ3§KZChf1(z)+f2(z)+···+fn(z)idz=ZCf1(z)dz+ZCf2(z)dz+···+ZCfn(z)dz·eC=C1+C2+···+Cn§KZC1f(z)dz+ZC2f(z)dz+···+ZCnf(z)dz=ZCf(z)dzC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5Ÿ¸ZC−f(z)dz=−ZCf(z)dz§Ù¥C−L«C_•¹ZCaf(z)dz=aZCf(z)dz§Ù¥a~êº ZCf(z)dz ≤ZC|f(z)||dz|C.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5Ÿ¸ZC−f(z)dz=−ZCf(z)dz§Ù¥C−L«C_•¹ZCaf(z)dz=aZCf(z)dz§Ù¥a~êº ZCf(z)dz ≤ZC|f(z)||dz|C.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5Ÿ¸ZC−f(z)dz=−ZCf(z)dz§Ù¥C−L«C_•¹ZCaf(z)dz=aZCf(z)dz§Ù¥a~êº ZCf(z)dz ≤ZC|f(z)||dz|C.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5Ÿ» ZCf(z)dz ≤Ml§Ù¥M f(z) 3Cþþ.§lCÝC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties~4.1¦ZCRezdz§C(i)÷¢¶d0→1§2²1uJ¶1→1+iC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties~4.1¦ZCRezdz§C(i)÷¢¶d0→1§2²1uJ¶1→1+i(ii)÷J¶d0→i§2²1u¢¶i→1+iC.S.Wu1oùECÈ©(˜)ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties~4.

1 / 127
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功