北大数学物理方法(A)-复变函数教案09常微分方程幂级数解法1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Outline1Êù~‡©§˜?ê){(˜)ÔnÆêÆÔn{‘§|2007cSC.S.Wu1Êù~‡©§˜?ê){(˜)OutlineùLJ:1§~:†Û:‚5àg~‡©§IO/ª~:†Û:2§~:S))35½n~K?Ø3))Ûòÿü‡ƒ'(ØC.S.Wu1Êù~‡©§˜?ê){(˜)OutlineùLJ:1§~:†Û:‚5àg~‡©§IO/ª~:†Û:2§~:S))35½n~K?Ø3))Ûòÿü‡ƒ'(ØC.S.Wu1Êù~‡©§˜?ê){(˜)OutlineùLJ:1§~:†Û:‚5àg~‡©§IO/ª~:†Û:2§~:S))35½n~K?Ø3))Ûòÿü‡ƒ'(ØC.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationReferencesÇÂÁ§5êÆÔn{6§§6.1—6.2ù&œ§5êÆÔn{6§§9.1,9.2nÎ!X1Á§5êÆÔn{6§§8.1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&SingularityùLJ:1§~:†Û:‚5àg~‡©§IO/ª~:†Û:2§~:S))35½n~K?Ø3))Ûòÿü‡ƒ'(ØC.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity‚5àg~‡©§IO/ªd2wdz2+p(z)dwdz+q(z)w=0p(z)Úq(z)¡§XêÄÑu:‡©§Xêû½‡©§‡©§Xêû½‡©§)‡©§Xê)Û5û½‡©§))Û5C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity‚5àg~‡©§IO/ªd2wdz2+p(z)dwdz+q(z)w=0p(z)Úq(z)¡§XêÄÑu:‡©§Xêû½‡©§‡©§Xêû½‡©§)‡©§Xê)Û5û½‡©§))Û5C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity‚5àg~‡©§IO/ªd2wdz2+p(z)dwdz+q(z)w=0p(z)Úq(z)¡§XêÄÑu:‡©§Xêû½‡©§‡©§Xêû½‡©§)‡©§Xê)Û5û½‡©§))Û5C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity?Ø^?ê){)~‡©§ž§)o´,˜½:z0SÂñá?ꐧXêp(z),q(z)3z0:)Û5û½?ê)3z0:)Û5§½ö`§Òû½?ê)/ª§~X§´Taylor?ꄴLaurent?êC.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity?Ø^?ê){)~‡©§ž§)o´,˜½:z0SÂñá?ꐧXêp(z),q(z)3z0:)Û5û½?ê)3z0:)Û5§½ö`§Òû½?ê)/ª§~X§´Taylor?ꄴLaurent?êC.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&SingularityùLJ:1§~:†Û:‚5àg~‡©§IO/ª~:†Û:2§~:S))35½n~K?Ø3))Ûòÿü‡ƒ'(ØC.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.1Legendre§(1−z2)d2wdz2−2zdwdz+l(l+1)w=0Xê´p(z)=−2z1−z2q(z)=l(l+1)1−z23k?Û:z=±1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.1Legendre§(1−z2)d2wdz2−2zdwdz+l(l+1)w=0Xê´p(z)=−2z1−z2q(z)=l(l+1)1−z23k?Û:z=±1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.1Legendre§(1−z2)d2wdz2−2zdwdz+l(l+1)w=0Xê´p(z)=−2z1−z2q(z)=l(l+1)1−z23k?Û:z=±1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.1Legendre§(1−z2)d2wdz2−2zdwdz+l(l+1)w=0Xê´p(z)=−2z1−z2q(z)=l(l+1)1−z23k?Û:z=±1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.1Legendre§(1−z2)d2wdz2−2zdwdz+l(l+1)w=0Xê´p(z)=−2z1−z2q(z)=l(l+1)1−z23k?Û:z=±1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.1Legendre§(1−z2)d2wdz2−2zdwdz+l(l+1)w=0Xê´p(z)=−2z1−z2q(z)=l(l+1)1−z23k?Û:z=±1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.2‡AÛ(hypergeometric)§z(1−z)d2wdz2+[γ−(1+α+β)z]dwdz−αβw=0Xê´p(z)=γ−(1+α+β)zz(1−z)q(z)=−αβz(1−z)3k?Û:z=0†z=1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.2‡AÛ(hypergeometric)§z(1−z)d2wdz2+[γ−(1+α+β)z]dwdz−αβw=0Xê´p(z)=γ−(1+α+β)zz(1−z)q(z)=−αβz(1−z)3k?Û:z=0†z=1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVicinityofOrdinaryPointAnalyticContinuationFormulationOrdinaryPoint&Singularity½ÂXJp(z),q(z)þ3z0:)Û§Kz0:¡§~:XJp(z),q(z)¥–k˜‡3z0:Ø)Û§Kz0:¡§Û:~9.2‡AÛ(hypergeometric)§z(1−z)d2wdz2+[γ−(1+α+β)z]dwdz−αβw=0Xê´p(z)=γ−(1+α+β)zz(1−z)q(z)=−αβz(1−z)3k?Û:z=0†z=1C.S.Wu1Êù~‡©§˜?ê){(˜)ODE:OrdinaryPoint&SingularitySolutionsinVi

1 / 96
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功