北大数学物理方法(A)-复变函数教案11留数定理及其应用1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Outline1›˜ù3ê½n9ÙA^(˜)ÔnÆêÆÔn{‘§|2007cSC.S.Wu1›˜ù3ê½n9ÙA^(˜)OutlineùLJ:13ê½n3ê½n3ê½nÐÚA^á:?3ê23ê½nOŽ½È©knn¼êȩáȩC.S.Wu1›˜ù3ê½n9ÙA^(˜)OutlineùLJ:13ê½n3ê½n3ê½nÐÚA^á:?3ê23ê½nOŽ½È©knn¼êȩáȩC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsReferencesÇÂÁ§5êÆÔn{6§§7.1—7.3ù&œ§5êÆÔn{6§§4.1,4.2nÎ!X1Á§5êÆÔn{6§§5.1,5.2,5.3C.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinityùLJ:13ê½n3ê½n3ê½nÐÚA^á:?3ê23ê½nOŽ½È©knn¼êȩáȩC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3êÚ\3‚/«R1≤|z−b|≤R2SüŠ)Û¼êf(z)§Œ±3T«SÐm¤Laurent?êf(z)=∞Pn=−∞an(z−b)nR1|z−b|R2an=12πiICf(ζ)(ζ−b)n+1dζù´Laurent?ê½Â©¢^þé|^ù‡½ÂOŽÐmX꧍õœ¹elO廍N´¦ÑXêC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3êÚ\3‚/«R1≤|z−b|≤R2SüŠ)Û¼êf(z)§Œ±3T«SÐm¤Laurent?êf(z)=∞Pn=−∞an(z−b)nR1|z−b|R2an=12πiICf(ζ)(ζ−b)n+1dζù´Laurent?ê½Â©¢^þé|^ù‡½ÂOŽÐmX꧍õœ¹elO廍N´¦ÑXêC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3êÚ\3‚/«R1≤|z−b|≤R2SüŠ)Û¼êf(z)§Œ±3T«SÐm¤Laurent?êf(z)=∞Pn=−∞an(z−b)nR1|z−b|R2an=12πiICf(ζ)(ζ−b)n+1dζù´Laurent?ê½Â©¢^þé|^ù‡½ÂOŽÐmX꧍õœ¹elO廍N´¦ÑXêC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3êÚ\‡L5A^þª§ÒŒU^5OŽÈ©ICf(ζ)(ζ−b)n+1dζ=2πianAO´§n=−1žICf(ζ)dζ=2πia−13,œ¹e§kŒUN´¦a−1ùÒ´3ê½nÄgŽC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3êÚ\‡L5A^þª§ÒŒU^5OŽÈ©ICf(ζ)(ζ−b)n+1dζ=2πianAO´§n=−1žICf(ζ)dζ=2πia−13,œ¹e§kŒUN´¦a−1ùÒ´3ê½nÄgŽC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3êÚ\‡L5A^þª§ÒŒU^5OŽÈ©ICf(ζ)(ζ−b)n+1dζ=2πianAO´§n=−1žICf(ζ)dζ=2πia−13,œ¹e§kŒUN´¦a−1ùÒ´3ê½nÄgŽC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3ê½n«G.C˜©ã1w{ü4Ü­‚©eØk‡áÛ:bk,k=1,2,3,···,n §¼êf(z)3GSüŠ)Û§3G¥ëY§…3Cþvkf(z)Û:§KICf(z)dz=2πinXk=1resf(bk)resf(bk)¡f(z)3bk?3ꧧuf(z)3bkSLaurentÐm¥(z−bk)−1Xêa(k)−1C.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3ê½n(‡:)ICf(z)dz=2πinXk=1resf(bk)=y7z‡Û:bkŠ4Ü­‚γk§¦γkþ3GS§…pØUKŠâEëÏ«Cauchy½n9LaurentÐmXêúª§=ICf(z)dz=nPk=1Iγkf(z)dz=2πinPk=1a(k)−1=2πinPk=1resf(bk)C.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3ê½n(‡:)ICf(z)dz=2πinXk=1resf(bk)=y7z‡Û:bkŠ4Ü­‚γk§¦γkþ3GS§…pØUKŠâEëÏ«Cauchy½n9LaurentÐmXêúª§=ICf(z)dz=nPk=1Iγkf(z)dz=2πinPk=1a(k)−1=2πinPk=1resf(bk)C.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3ê½n(‡:)ICf(z)dz=2πinXk=1resf(bk)=y7z‡Û:bkŠ4Ü­‚γk§¦γkþ3GS§…pØUKŠâEëÏ«Cauchy½n9LaurentÐmXêúª§=ICf(z)dz=nPk=1Iγkf(z)dz=2πinPk=1a(k)−1=2πinPk=1resf(bk)C.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3ê½n(‡:)ICf(z)dz=2πinXk=1resf(bk)=y7z‡Û:bkŠ4Ü­‚γk§¦γkþ3GS§…pØUKŠâEëÏ«Cauchy½n9LaurentÐmXêúª§=ICf(z)dz=nPk=1Iγkf(z)dz=2πinPk=1a(k)−1=2πinPk=1resf(bk)C.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinityµã3ê½n¢Ÿ3ê½n=áÛ:Vg+CauchyÈ©úª+LaurentÐmXêúªC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinityµã3ê½nwŠ·‚§)Û¼êŒÈ©Š†¼ê3ŒSÛ:†k'©OŽ)Û¼êŒÈ©Š§IOŽÑ¼ê3ŒSˆÛ:?3ê¦f(z)3Û:b?3ê§Kþ`§Ò´¦f(z)3z=bSLaurentÐm¥(z−b)−1‘Xê34:œ¹e§Œ±ÏL‡ûOŽ¦3êC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinityµã3ê½nwŠ·‚§)Û¼êŒÈ©Š†¼ê3ŒSÛ:†k'©OŽ)Û¼êŒÈ©Š§IOŽÑ¼ê3ŒSˆÛ:?3ê¦f(z)3Û:b?3ê§Kþ`§Ò´¦f(z)3z=bSLaurentÐm¥(z−b)−1‘Xê34:œ¹e§Œ±ÏL‡ûOŽ¦3êC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinityµã3ê½nwŠ·‚§)Û¼êŒÈ©Š†¼ê3ŒSÛ:†k'©OŽ)Û¼êŒÈ©Š§IOŽÑ¼ê3ŒSˆÛ:?3ê¦f(z)3Û:b?3ê§Kþ`§Ò´¦f(z)3z=bSLaurentÐm¥(z−b)−1‘Xê34:œ¹e§Œ±ÏL‡ûOŽ¦3êC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3êOŽz=b:´f(z)m4:3b:Sf(z)=a−m(z−b)−m+···+a−1(z−b)−1+a0+a1(z−b)+a2(z−b)2+···üàÓ¦±(z−b)m(z−b)mf(z)=a−m+···+a−1(z−b)m−1+a0(z−b)m+a1(z−b)m+1+a2(z−b)m+2+···a−1(z−b)mf(z)Ðmª¥(z−b)m−1‘Xêa−1=1(m−1)!dm−1dzm−1(z−b)mf(z) z=bC.S.Wu1›˜ù3ê½n9ÙA^(˜)ResiduetheoremEvaluationofDefiniteIntegralsResiduetheoremSomeApplicationsofResidueTheoremResidueatInfinity3êOŽz=b:´f(z)m4:3b:Sf(z)=a−m(z−b)−m+···+a−1(z−b)−1+a0+a1(z−b)+a2(z−b)2+···üàÓ¦±(z−b)m(z−b)mf(z)=

1 / 141
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功