北大数学物理方法(A)-复变函数教案13Γ函数与 B函数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Outline1›nùΓ¼ê†B¼êÔnÆêÆÔn{‘§|2007cSC.S.Wu1›nùΓ¼ê†B¼êOutlineùLJ:1Γ¼êΓ¼ê½ÂΓ¼ê)Û5Γ¼êÄ5Ÿ2B¼êB¼ê½ÂB¼ê†Γ¼êk'Γ¼êü‡úªy²C.S.Wu1›nùΓ¼ê†B¼êOutlineùLJ:1Γ¼êΓ¼ê½ÂΓ¼ê)Û5Γ¼êÄ5Ÿ2B¼êB¼ê½ÂB¼ê†Γ¼êk'Γ¼êü‡úªy²C.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionReferencesÇÂÁ§5êÆÔn{6§§8.1—8.4ù&œ§5êÆÔn{6§N¹13nÎ!X1Á§5êÆÔn{6§§4.3,4.4C.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesùLJ:1Γ¼êΓ¼ê½ÂΓ¼ê)Û5Γ¼êÄ5Ÿ2B¼êB¼ê½ÂB¼ê†Γ¼êk'Γ¼êü‡úªy²C.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ¼ê~^½ÂΓ(z)=Z∞0e−ttz−1dtRez0٥ȩCþtATn)argt=0¡1aEulerÈ©ù´˜‡‡~È©µQ´×È©(3t=0à)§q´Ã¡È©C.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ¼ê~^½ÂΓ(z)=Z∞0e−ttz−1dtRez0٥ȩCþtATn)argt=0¡1aEulerÈ©ù´˜‡‡~È©µQ´×È©(3t=0à)§q´Ã¡È©C.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ¼ê~^½ÂΓ(z)=Z∞0e−ttz−1dtRez0٥ȩCþtATn)argt=0¡1aEulerÈ©ù´˜‡‡~È©µQ´×È©(3t=0à)§q´Ã¡È©C.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesùLJ:1Γ¼êΓ¼ê½ÂΓ¼ê)Û5Γ¼êÄ5Ÿ2B¼êB¼ê½ÂB¼ê†Γ¼êk'Γ¼êü‡úªy²C.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Properties?ØΓ¼ê)Û5§IòÈ©¤üÜ©Γ(z)=Z∞0e−ttz−1dt=Z10e−ttz−1dt|{z}γ(z,1)+Z∞1e−ttz−1dt|{z}Γ(z,1)kkw1Ü©Γ(z,1)=Z∞1e−ttz−1dtC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Properties?ØΓ¼ê)Û5§IòÈ©¤üÜ©Γ(z)=Z∞0e−ttz−1dt=Z10e−ttz−1dt|{z}γ(z,1)+Z∞1e−ttz−1dt|{z}Γ(z,1)kkw1Ü©Γ(z,1)=Z∞1e−ttz−1dtC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1ž§ȼêe−ttz−1´tëY¼êŠz¼ê§3²¡)ۇy²§“L˜‡)Û¼ê§ÒIy²È©˜—Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1ž§ȼêe−ttz−1´tëY¼êŠz¼ê§3²¡)ۇy²§“L˜‡)Û¼ê§ÒIy²È©˜—Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1ž§ȼêe−ttz−1´tëY¼êŠz¼ê§3²¡)ۇy²§“L˜‡)Û¼ê§ÒIy²È©˜—Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1ž§ȼêe−ttz−1´tëY¼êŠz¼ê§3²¡)ۇy²§“L˜‡)Û¼ê§ÒIy²È©˜—Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1ž§ȼêe−ttz−1´tëY¼êŠz¼ê§3²¡)ۇy²§“L˜‡)Û¼ê§ÒIy²È©˜—Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5éuz²¡þ?˜4«(«S?¿˜:§þkRezx0) e−ttz−1 N!·tx0−N−1‡ÀJvŒN(¦Nx0)È©Z∞1tx0−N−1dtÒÂñΓ(z,1)3z²¡S4˜—ÂñÏdΓ(z,1)3²¡)ÛC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5éuz²¡þ?˜4«(«S?¿˜:§þkRezx0) e−ttz−1 N!·tx0−N−1‡ÀJvŒN(¦Nx0)È©Z∞1tx0−N−1dtÒÂñΓ(z,1)3z²¡S4˜—ÂñÏdΓ(z,1)3²¡)ÛC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5éuz²¡þ?˜4«(«S?¿˜:§þkRezx0) e−ttz−1 N!·tx0−N−1‡ÀJvŒN(¦Nx0)È©Z∞1tx0−N−1dtÒÂñΓ(z,1)3z²¡S4˜—ÂñÏdΓ(z,1)3²¡)ÛC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5éuz²¡þ?˜4«(«S?¿˜:§þkRezx0) e−ttz−1 N!·tx0−N−1‡ÀJvŒN(¦Nx0)È©Z∞1tx0−N−1dtÒÂñΓ(z,1)3z²¡S4˜—ÂñÏdΓ(z,1)3²¡)ÛC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Propertiesγ(z,1)=Z10e−ttz−1dt)Û5'…´y²§˜—Âñ5Ϗ e−ttz−1 =e−ttx−1(x=Rez)¤±éuz²¡þmŒ²¡?˜«§kRez≥δ0 e−ttz−1 ≤tδ−1Z10tδ−1dtÂñγ(z,1)3z²¡þmŒ²¡S4˜—ÂñÏdγ(z,1)3mŒ²¡)ÛC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Propertiesγ(z,1)=Z10e−ttz−1dt)Û5'…´y²§˜—Âñ5Ϗ e−ttz−1 =e−ttx−1(x=Rez)¤±éuz²¡þmŒ²¡?˜«§kRez≥δ0 e−ttz−1 ≤tδ−1Z10tδ−1dtÂñγ(z,1)3z²¡þmŒ²¡S4˜—ÂñÏdγ(z,1)3mŒ²¡)ÛC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Propertiesγ(z,1)=Z10e−ttz−1dt)Û5'…´y²§˜—Âñ5Ϗ e−ttz−1 =e−ttx−1(x=Rez)¤±éuz²¡þmŒ²¡?˜«§kRez≥δ0 e−ttz−1 ≤tδ−1Z10tδ−1dtÂñγ(z,1)3z²¡þmŒ²¡S4˜—ÂñÏdγ(z,1)3mŒ²¡)ÛC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Propertiesγ(z,1)=Z10e−ttz−1dt)Û5'…´y²§˜—Âñ5Ϗ e−ttz−1 =e−ttx−1(x=Rez)¤±éuz²¡þmŒ²¡?˜«§kRez≥δ0 e−ttz−1 ≤tδ−1Z10tδ−1dtÂñγ(z,1)3z²¡þmŒ²¡S4˜—ÂñÏdγ(z,1)3mŒ²¡)ÛC.S.Wu1›nùΓ¼ê†B¼êGammaFunctionBetaFunctionGam

1 / 128
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功