北大数学物理方法(B)教案08二阶线性常微分方程的幂级数解法1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

WuChong-shi()1!#$%&(’)§8.1()*+,-./01,234256789:;=?@ABCDd2wdz2+p(z)dwdz+q(z)w=0,(8.1)p(z)Eq(z)FGHIJKLM•HIJNOPQRHIJKLSTJM•UVOWHINJNXYOPQRHIKLJNXYSTJMZ[\]^]_‘abcdWefg]hijklmnz0gopqrsgtu[\Mbcv\p(z),q(z)wz0ng]xyz{m|[\]wz0ng]xyW}~Wz{m|[\]gWWiTaylor[\iLaurent[\M•p(z),q(z)z0NXWz0FGHIJM•p(z),q(z)z0NXWz0FGHIJM8.1HI(Hypergeometricequation)z(1−z)d2wdz2+γ−(1+α+β)zdwdz−αβw=0JKLOp(z)=γ−(1+α+β)zz(1−z)Eq(z)=−αβz(1−z).Wp(z)Eq(z)z=0Ez=1MWz=0Ez=1OHIJWJ¡¢£OHIJM8.2LegendreHI1−x2d2ydx2−2xdydx+l(l+1)y=0,JGx=±1MWuChong-shi§8.1⁄¥ƒ⁄2§¤'“«z=∞OOHI(8.1)JW‹›fifl–J†z=1/tMdwdz=−t2dwdt,d2wdz2=t4d2wdt2+2t3dwdt.‡·WHI(8.1)Gd2wdt2+2t−1t2p1tdwdt+1t4q1tw=0.(8.2)t=0OHI(8.2)J()WF“«z=∞OHI(8.1)J()Mt=0(z=∞)GHIJ¶•Op1t=2t+a2t2+a3t3+···,q1t=b4t4+b5t5+···,p(z)=2z+a2z2+a3z3+···,q(z)=b4z4+b5z5+···.“«OHIELegendreHIJMWuChong-shi()3§8.2?;‚„”»@…‰W¿`´ˆ˜¯˘JT˙M¨8.1p(z)Eq(z)˚|z−z0|R¸˝NXW·˚¸˛ˇHI—˝d2wdz2+p(z)dwdz+q(z)w=0,w(z0)=c0,w0(z0)=c1(c0,c1GL)JNw(z)Ww(z)˚¸˝NXMT˙Ww(z)z0J|z−z0|R¸GTaylorÆLw(z)=∞Xk=0ck(z−z0)k.ªW(z−z0)0(z−z0)1JKLc0c1E—˝¶•ŁMØŒºJÆLN˛ˇHIWKLWæKLckMT˙`WKLck(k=2,3,···)ıc0,c1M8.3æLegendreHI1−x2d2ydx2−2xdydx+l(l+1)y=0x=0¸JNW¡lOłLM…x=0OHIJW‡·WøNy=∞Xk=0ckxk.HIW1−x2∞Xk=0ckk(k−1)xk−2−2x∞Xk=0ckkxk−1+l(l+1)∞Xk=0ckxk=0,œ˙ßW∞Xk=0n(k+2)(k+1)ck+2−k(k+1)−l(l+1)ckoxk=0.TaylorJYW(k+2)(k+1)ck+2−[k(k+1)−l(l+1)]ck=0,ck+2=k(k+1)−l(l+1)(k+2)(k+1)ck=(k−l)(k+l+1)(k+2)(k+1)ck.KLJMıKWæKLWuChong-shi§8.2⁄4c2n=(2n−l−2)(2n+l−1)2n(2n−1)c2n−2=(2n−l−2)(2n−l−4)(2n+l−1)(2n+l−3)2n(2n−1)(2n−2)(2n−3)c2n−4=···=c0(2n)!(2n−l−2)(2n−l−4)···(−l)·(2n+l−1)(2n+l−3)···(l+1),c2n+1=(2n−l−1)(2n+l)(2n+1)(2n)c2n−1=(2n−l−1)(2n−l−3)(2n+l)(2n+l−2)(2n+1)(2n)(2n−1)(2n−2)c2n−3=···=c1(2n+1)!(2n−l−1)(2n−l−3)···(−l+1)·(2n+l)(2n+l−2)···(l+2).ıΓLJYΓ(z+1)=zΓ(z),Γ(z+n+1)=(z+n)(z+n−1)···(z+1)zΓ(z),Øc2nEc2n+1c2n=22n(2n)!Γn−l2Γ−l2Γn+l+12Γl+12c0,c2n+1=22n(2n+1)!Γn−l−12Γ−l−12Γn+1+l2Γ1+l2c1.WLegendreHIJNOy(x)=c0y1(x)+c1y2(x),¡y1(x)=∞Xn=022n(2n)!Γn−l2Γ−l2Γn+l+12Γl+12x2n,y2(x)=∞Xn=022n(2n+1)!Γn−l−12Γ−l−12Γn+1+l2Γ1+l2x2n+1.WuChong-shi()5T˙WTc0Ec1WTæHIJUNMUVOW•c0=1,c1=0WUNy1(x)•c0=0,c1=1WUNy2(x)MW]y1(x)y2(x)iytgMyt]!Wz#$%bcg&]M•NºJLc0Ec1’O(¿LW)˘JOHIJ*NM+…@,-8@./M)˘æJUNWy1(x)01xJ234Wy2(x)01xJ34Wy1(x)OxJ2LWy2(x)OxJLM5æNJ6I7’WOR8K09KLck+2EckW:ck+1“W‡·c2nPQRc0STWc2n+1PQRc1STM5;)7WHIJNJFY(=JO2Y)Wª?@OHIJFYJAM*6BCW’¸æÆLNJDEFMO•Ø(HI¸J)NGTaylorÆLW˛ˇHI•KLWKLJK•ıKWæKLckJGHIº(ıc0Ec1)W5:JKÆLNR8KTOLYJ(‡GHIOLYJ)WJKJÆLNTw(z)=c0w1(z)+c1w2(z)JŒºMKLJKWDMNO9ck,ck+1,ck+2PQJKLW‡·ckMNORS8c0Ec1WJKæJw1(z)Tw2(z)M01zJ234T34MWuChong-shi§8.2⁄6?ı˛ˇHIJ4ÆLNUWHITV¸JNºMWXYZ§WæHINV¸JNºM`WHINV¸JNºW[GNX\]M‡·WY5HI^V¸JNº_W*6NX\]WHI¡¢V¸JNºM8.4‘w1OHId2wdz2+p(z)dwdz+q(z)w=0(8.3)JNWVG1¸NXMaew1Ow1VG2¸JNX\]Ww1≡ew1,z∈G1TG2,(8.4)b`ew1cOHI(8.3)JNMd‘d2ew1dz2+p(z)dew1dz+q(z)ew1=g(z),g(z)G2¸NXM‡Gw1OHI(8.3)VG1¸JNWefVG1TG2¸WcghHId2w1dz2+p(z)dw1dz+q(z)w1=0.:·fV¸Ww1(z)≡ew1(z)Wed2ew1dz2+p(z)dew1dz+q(z)ew1=0,z∈G1TG2,g(z)≡0,z∈G1TG2MNXLJYWig(z)≡0,z∈G2,jew1G2¸ghHId2ew1dz2+p(z)dew1dz+q(z)ew1=0.8.5‘w1Ew2£OHI(8.3)JLY“NWVG1¸NXMaew1Eew2ˇVOw1Ew2VG2¸JNX\]Wz∈G1TG2w1≡ew1,w2≡ew2.bew1Eew2cLY“MdRC8.4kWew1Eew2cOHI(G2¸)JNM‡Gw1Ew2LY“WΔ[w1,w2]≡ w1w2w01w02 6=0,z∈G1.‘Δ[ew1,ew2]≡ ew1ew2ew01ew02 =g(z),g(z)G2¸NXMR8z∈G1TG2Ww1≡ew1,w2≡ew2,eg(z)6=0,z∈G1TG2McªNXLJYWg(z)6=0,z∈G2.Wew1Eew2(G2¸)cLY“M

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功