北大数学物理方法(B)教案07解析函数的局域性展开(续)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

WuChong-shi()1()§7.1!Laurent#$%&’()*+,-./0Taylor123456789:;,/=12?@A(BC6DEFLaurent12BGH7.1(Laurent)I’(f(z),JbKLMNOPQRR1≤|z−b|≤R2STU-.4VWXORYNZ[z/4f(z)+J\@A(12Kf(z)=∞Xn=−∞an(z−b)n,R1|z−b|R2,]^an=12πiICf(ζ)(ζ−b)n+1dζ,C_ORY‘YL%aNZb%cdefg(hi7.1)Bj7.1Laurentklm:ORNY3nopqrKC1sC24VtuvwxQRNCauchyypz{45f(z)=12πiIC2f(ζ)ζ−zdζ−12πiIC1f(ζ)ζ−zdζ.WXC2SNyp4+J|}~\JN412πiIC2f(ζ)ζ−zdζ=∞Xn=0an(z−b)n,|z−b|R2,an=12πiIC2f(ζ)(ζ−b)n+1dζ.WXC1SNyp−12πiIC1f(ζ)ζ−zdζ=12πiIC1f(ζ)(z−b)−(ζ−b)dζ=12πiIC1f(ζ)z−b∞Xk=0ζ−bz−bkdζ=∞Xk=0(z−b)−k−1·12πiIC1f(ζ)(ζ−b)kdζ.−k−1=n,k=−(n+1)4V−12πiIC1f(ζ)ζ−zdζ=−∞Xn=−1(z−b)n·12πiIC1f(ζ)(ζ−b)n+1dζ=−∞Xn=−1an(z−b)n,|z−b|R1,]^an=12πiIC1f(ζ)(ζ−b)n+1dζ.WuChong-shi§7.1Laurent2pe4D5f(z)=∞Xn=−∞an(z−b)n,R1|z−b|R2,an=12πiICf(ζ)(ζ−b)n+1dζ.C&K’(f(z),ORR1|z−b|R2YNLaurent124]^NA(KLaurentA(BanCB(¡¢)£⁄¥FLaurent12Ncƒ§+J¤'Kf(z),R1|z−b|R2YTU-.BFWXLaurent12“4«((‹›_fi@flN«()an6=1n!f(n)(b).Ff(z),YLC1^-.B%–“4,C1S_5/NB†Xb/4+‡_f(z)N/4§+‡_f(z)N-./B•·b/_C2YN%/4VC1+J¶•‚„4”»…‰D?0|z−b|RBC6DEFf(z),¿/bN`RYNLaurent12B•3LC2N´ˆ§+JK∞4˜†,∞/§”»BFLaurent12¯5fi@fl4˘5˙@flB•fi@fl,LC2Y(|z−b|R2)¨W”»4,C2YNZb%&dQR^%”»4KLaurentA(NfiVp˚•˙@fl,LC13(|z−b|R1)¨W”»4,C13NZb%&dQR^%”»4KLaurentA(N¸9pB•pe4D?LaurentA(4,ORR1|z−b|R2Y¨W”»4,ORYNZb%&dQR^%”»B•˝R1=064LaurentA(N¸9pD˛ˇ—*f(z),z=b/NBWuChong-shi()3FLaurentIf(z),ORR1|z−b|R2Y5&LaurentA(4f(z)=∞Xn=−∞an(z−b)n=∞Xn=−∞a0n(z−b)n.J(z−b)−k−14ORY‘YL%aNZ%‰Cyp(C&A(,‰S%”»4Æ+Jªflyp)4VXIC(z−b)n−k−1dz=2πiδnk,5ak=a0kBÆKkZb45ak=a0k,k=0,±1,±2,···.‹ELaurent12N%BŁØŒLaurentºæ4ıłø(œßø)BWuChong-shi§7.2Laurent4§7.2Laurent!Laurent4(4)B4!Laurent#$%B&’()*+,-.Laurent/40412$%4345)6,-.785f(z)9:4;=+f(z)LaurentBTaylor?$%4@!ABC4DEFLaurentBG7.1H1z(z−1),0|z|1Ys|z|1YN12{BI1z(z−1),0|z|1YN12P{%J_∞Pn=−∞anznBKJ1z(z−1)=−1z11−z=−1z∞Xn=0zn=−∞Xn=0zn−1=−∞Xn=−1zn,0|z|1.§+J\pp{NLM¥1z(z−1)=−1z−11−z=−1z−∞Xn=0zn=−∞Xn=−1zn.1z(z−1),|z|1YNLaurent12P{§_∞Pn=−∞anzn41z(z−1)=1z211−1z=1z2∞Xn=01zn=−∞Xn=−2zn,|z|1.NOP54Q6()1QR-.LaurentS1TQB1/z(z−1))0|z|1.Laurent3!6U9V4W)|z|1.Laurent!XYZ6U9V4[\!]9VBG7.2\^J«(MHcotz,z=0`RYNLaurent12BI^J«(M_‡\X5•&˙@fl(fi@fl)N‘PBcotz=∞Xn=−1b2n+1z2n+1.(3!6U9V46a)5.6bc2B)cosz=sinz∞Xn=−1b2n+1z2n+1,∞Xn=0(−)n(2n)!z2n=∞Xk=0(−)k(2k+1)!z2k+1∞Xl=0b2l−1z2l−1=∞Xk=0∞Xl=0(−)k(2k+1)!b2l−1z2(k+l)=∞Xn=0nXl=0(−)n−l(2n−2l+1)!b2l−1#z2n.WuChong-shi()5dEFefg«nXl=0(−)l(2n−2l+1)!b2l−1=1(2n)!.ªhH-4‹En=0:b−1=1;n=1:13!b−1−11!b1=12!,b1=−13;n=2:15!b−1−13!b1+11!b3=14!,b3=−145;n=3:17!b−1−15!b1+13!b3−11!b5=16!,b5=−2945;...KJcotz=1z−13z−145z3−2945z5−···.tucotzN/pi4+jkdA(N”»…‰K0|z|πBlm7+Jn\A()MBcotz=1tanz=1z+13z3+215z5+17315z7+···=1z11+13z2+215z4+17315z6+···=1zh1−13z2+215z4+17315z6+···+13z2+215z4+17315z6+···2−13z2+215z4+17315z6+···3+13z2+215z4+17315z6+···4−+···i=1zh1−13z2+−215+19z4+−17315+2×13×215−127z6+···i=1z1−13z2−145z4−2945z6−···=1z−13z−145z3−2945z5+···.WuChong-shi§7.2Laurent6opqLaurentG7.3H’(lnz−2z−1,1|z|2r2|z|∞YN@A(12BIlm^sJN12QR_OPQR4KJ4·‡0@A(12Nt4EFN%J_LaurentA(B’(lnz−2z−15&u/¥z=1sz=24,OR1|z|2Y+‡0Laurent12B,OR2|z|∞Y4’(lnz−2z−1_TU-.N4vwxyz{|JTUpu}4L+0Laurent12B~·4|J,gSarg(z−2)−arg(z−1)=π4Vlnz−2z−1 z=∞=0.X_5lnz−2z−1=ln1−2/z1−1/z=ln1−2z−ln1−1z=−2z−122z2−132z3−···#−−1z−121z2−131z3−···#=−1z−321z2−731z3−···−2n−1n1zn−···.G7.4Hexpz2t−1t,0|t|∞YNLaurent12BI\A(MBÆKezt/2=∞Xk=0z2ktkk!,|t|∞,e−z/2t=∞Xl=0z2l(−)ll!1tl, 1t ∞‹|t|0,KJexpz2t−1t=∞Xk=0z2ktkk!∞Xl=0z2l(−)ll!1tl=∞Xk=0∞Xl=0(−)lk!l!z2k+ltk−l=∞Xn=0h∞Xl=0(−)ll!(l+n)!z22l+nitn+−∞Xn=−1h∞Xl=−n(−)ll!(l+n)!z22l+nitn=∞Xn=−∞Jn(z)tn,WuChong-shi()7]^Jn(z)=∞Xl=0(−)ll!(l+n)!z22l+n,n=0,1,2,···;∞Xl=−n(−)ll!(l+n)!z22l+n,n=−1,−2,−3,···KnBessel’(B·¶/_’(f(z)N/4,¶/N`RYTU-.Nt4V+:f(z),∞/N`RY0Laurent12(56DT“?,∞/0Laurent12)BFf(z))∞-.(∞)4=t=1/z4(f(1/t))t=0-.(t=0)40Wf1t=∞Xn=−∞antn,0|t|r,f(z)=∞Xn=−∞anz−n,1r|z|∞.78P∞6,-BFf(1/t)Laurent:]9V(V)]4U9VB04E¡4NOf(z))z=∞-.Laurent:4zU9V¢]4W]9V¢B]9V£⁄(f(z))∞¥ƒ§BS¤N~4s~6N'“«‘PJr~74§‹+J›?_,∞/`RYLaurent12BWuChong-shi§7.3fifl–†‡8§7.3·!¶•‚„G”If(z)KTU’((»…U’(N%&TUpu)4b/_;N/B·,b/‰,%&`R4,`RY()b/3)4f(z)¿¿+4VbKf(z)N¿/B`¿/N~´BWX’(1/sin(1/z)441/z=nπ4‹z=1/nπ4n=0,±1,±2,···_;N/BVz=0_Cˆ/N˜/(¯•/)¥,z=0NZb%&`R^4˘‰,¶…&/4z=0_`¿/B·z=b_TU’(f(z)N¿/4V%J‰,%&OR0|z−b|R4,ORY4f(z)+J12?LaurentA(4f(z)=∞Xn=−∞an(z−b)n.C6+‡˙¨«‘˚¥FA(12{¸˙@fl¥b/Kf(z)N+/Bz=0D_’(sinzz=∞Xn=0(−)n(2n+1)!z2n,|z|∞s1z−cotz=13z+145z3+2945z5+···,|z|πN+/BFA(12{_¸5•&˙@fl¥b/Kf(z)N¯/BFA(12{¸5¶…&˙@fl¥b/Kf(z)Nl/B˝¤pq£⁄’(,«/¿N˛KBߡ—X,+/¿4A(12{^¸˙@fl4A(__,ORY”»4,ORN^M4‹+/z=b¿§_”»NBwwC6N”»QR_%&L4LM,+/z=b4A(,”»LYNZ%dQR^%”»4wws’(w4limz→bf(z)=limz→b∞Xn=0an(z−b)n=a0.WuChong-shi()9’(,+

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功