北大数学物理方法(B)教案10留数定理及其应用1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

WuChong-shi1§10.1!G#$%C&’()*+#,-./0123456789:;bk,k=1,2,3,···,n=?f(z)@GA-BCD=@GEFG=H@CIJ5f(z)#:;=KICf(z)dz=2πinXk=1resf(bk).resf(bk)L&f(z)@bkM#N?=OPQf(z)@bk#RALaurentSTE(z−bk)−1#U?a(k)−12V10.1WXYZ[\]10.1=^_‘7:;bka./01γk=bγkc@GA=Hdefg=KhijFk!Cauchylmn?aLaurentSTo#U?pq=r5ICf(z)dz=nXk=1Iγkf(z)dz=2πinXk=1a(k)−1=2πinXk=1resf(bk).stuvwxyz={|}t~}t~2{|}t~=}t~st2Ff(z)@:;bM#N?=KI=rf(z)@z=b#RALaurentSTE(z−b)−1#U?2F@;#=k¡¢£⁄N?2WuChong-shi§10.12F¥ƒ§¤'“«b;f(z)#’‹;=K@b;#RA=f(z)=a−1(z−b)−1+a0+a1(z−b)+a2(z−b)2+···.(z−b)›STqfifl=(z−b)f(z)=a−1+a0(z−b)+a1(z−b)2+a2(z−b)3+···.a−1=limz→b(z−b)f(z).F–†‡·#f(z)¶&P(z)/Q(z)=P(z)•Q(z)c@b;n‚RACD=bQ(z)#’‹„;=Q(b)=0=Q0(z)6=0=P(b)6=0=Ka−1=limz→b(z−b)f(z)=limz→b(z−b)P(z)Q(z)=P(b)Q0(b).”10.11z2+1@:;M#N?2»z=±iO#’‹;2resf(±i)=12z z=±i=∓i2.”10.2eiaz−eibzz2@:;M#N?2»z=0O#’‹;2resf(0)=limz→0z·eiaz−eibzz2.=limz→0eiaz−eibzz=i(a−b).F…ƒ§¤'“«z=bf(z)#m‹;=m≥2=f(z)=a−m(z−b)−m+a−m+1(z−b)−(m−1)+···+a−1(z−b)−1+a0+a1(z−b)+···.fifl›I(z−b)m=(z−b)mf(z)=a−m+a−m+1(z−b)+···+a−1(z−b)m−1+a0(z−b)m+a1(z−b)m+1+···.‰oa−1(z−b)mf(z)#STqE(z−b)m−1#U?=a−1=1(m−1)!dm−1dzm−1(z−b)mf(z) z=b.”10.31/(z2+1)3@:;M#N?2»z=±iO#¿‹;2resf(±i)=12!d2dz2(z∓i)3·1(z2+1)3 z=±i=12!d2dz21(z±i)3 z=±iWuChong-shi3=12!(−3)(−4)(z±i)−5 z=±i=∓316i.F`∞¤'´Q∞;=lˆresf(∞)=12πiIC0f(z)dz,‰˜#C0_∞;¯˘(˙r¨o˚˘)’¸#^=@^A4∞;˝f(z)#:;†˛:;2Fresf(∞)ˇef(z)@∞RALaurentSTEz1#U?2resf(∞)=12πiIC0f(z)dz=−12πiICf1tdtt2=−1t2f1t@t=0;RA—?STEt−1#U?=−f1t@t=0;RA—?STEt1#U?=−f(z)@z=∞;RA—?STEz−1#U?2F‰7•56MeM1.=}tf(z)∞~st=f(z)∞Ætªz−1~tŁØ−1=Œº22.æ=z−1ıf(z)∞Ætª~łø=œß=∞f(z)~=resf(∞)Ø02=∞f(z)~==Ø02F''22?f(z)=1(z−1)(z−2)(z−3)((q21(z−1)(z−2)(z−3)=Az−1+Bz−2+Cz−3.¿7l‡?=A,B•C=¯r?f(z)@’‹;z=1,z=2•z=3;M#N?2A=res1(z−1)(z−2)(z−3) z=1=12,WuChong-shi§10.14B=res1(z−1)(z−2)(z−3) z=2=−1,C=res1(z−1)(z−2)(z−3) z=3=12.\?f(z)5‹;=˙Mm2\=1(z−1)2(z−2)(z−3)=A(z−1)2+Bz−1+Cz−2+Dz−3.A=res1(z−1)(z−2)(z−3) z=1=12,B=res1(z−1)2(z−2)(z−3) z=1=34,C=res1(z−1)2(z−2)(z−3) z=2=−1,D=res1(z−1)2(z−2)(z−3) z=3=14.F'2N?lm^!(#£⁄#&N?#£⁄=$%˝l!(•’lCD?#^!(&U’(=r5˝)*,+£⁄‰,l!(2WuChong-shi5§10.2-./01235m¿4?#!(#5qI=Z2π0R(sinθ,cosθ)dθ,‚ERsinθ,cosθ#5m?=@!(!6IFG#2a78z=eiθ=Ksinθ=z2−12iz,cosθ=z2+12z,dθ=dziz,9:#!(;K7&z=I#-?@#@¸|z|=12Q=I=I|z|=1Rz2−12iz,z2+12zdziz=2πX|z|1res1zRz2−12iz,z2+12z.5m¿4?R(sinθ,cosθ)@!(!6[0,2π]IFG=rABC5m?Rz2−12iz,z2+12z@-?@#@¸I˛:;2”10.4£⁄!(I=Z2π011+εcosθdθ,|ε|12»DEI#˚FGH=IJ5I=Z2π011+εcosθdθ=I|z|=111+εz2+12zdziz=I|z|=12εz2+2z+εdzi=2πX|z|1res2εz2+2z+ε=2π·22εz+2 z=(−1+√1−ε2)/ε=2π√1−ε2.£⁄N?o=KL?2/(εz2+2z+ε)5fi7;=z=−1±√1−ε2ε,MNQOJ#›!&1=’l$5’7;=z=(−1+√1−ε2)/ε=MQ-?@A2WuChong-shi§10.3OPQR6§10.3ST23˛U!(#lˆ&Z∞−∞f(x)dx=limR1→+∞R2→+∞ZR2−R1f(x)dx.5o‰V6eW@=MlimR→+∞ZR−Rf(x)dxW@=L&!(XB=Y&v.p.Z∞−∞f(x)dx=limR→+∞ZR−Rf(x)dx.Z[=\‰fiV6]W@o=OJ^l9P2@j=I=!(Z∞−∞f(x)dx_‘abcd#=ˇeefj7?#^!(2•IJa?f(x)gh&j?f(z)•&C˝ef^!(ˇ:iN?lm£⁄=j^k(1)lIm\#!(;n5f./^=£⁄If(z)dzo(2)@lI#;I#!(=pqr%£⁄#˛U!(st9u=pq,-˚+£⁄(2vw[#xF\[lI;&@y=R&z#Iz@CR=ICf(z)dz=ZR−Rf(z)dz+ZCRf(z)dz.V10.2n{|R→∞2‰}=IJ+~%£⁄ZCRf(z)dz#6B2$%f(z)m\#=‰x#2e?f(z)WuChong-shi71.f(z)@Iz=4C56789:;MMCD#=@abIJ5:;o2.@0≤argz≤π^A=\|z|→∞o=zf(z)’Q0=´Q#ε0=W@M(ε)0=b\|z|≥M=0≤argz≤πo=|zf(z)|ε2Œ21~=ØstuvICf(z)dz=ZR−Rf(z)dz+ZCRf(z)dz=2πiXresf(z).2=¡¢£⁄¥~ƒ§limx→±∞xf(x)=0~¤'“«=‹›=fiflv3.2=–limR→∞ZCRf(z)dz=0.†6R→∞=r‡Z∞−∞f(x)dx=2πiXIz=resf(z).”10.5£⁄l!(I=Z∞−∞dx(1+x2)32»oZ[·/I%#=I=Z∞−∞dx(1+x2)3=2πi·res1(1+z2)3 z=i=2πi·−3i16=38π.v{=&C´:iN?lm£⁄l!(#¶•‚„5’7)*”»#mC=e…‰j’#¿&C˝:iN?lm£⁄˛U!(=IJ^k1.lIm\#!(;n5f./^=£⁄If(z)dzo2.@lI#;I#!(=pqr%£⁄#˛U!(st9u=pq,-˚+£⁄(2WuChong-shi§10.3OPQR8¶Q‰}#mC=r`´ˆ˜¯iN?lm£⁄l!(2F˘f(x)˙}t=ł¨Z∞0f(x)dx=Z∞0f(x)dx=12Z∞−∞f(x)dx,Ø˚'ظ10.2~=˝˛~ˇ—=Z∞0f(x)dx=12Z∞−∞f(x)dx=πiXresf(z).F˘Z∞0f(x)dx=}tf(z)¨=˘f(z)=f(zeiθ),=ظ10.3~2V10.3V10.4”10.6£⁄l!(Z∞0dx1+x42»NQ‰˜#!?f(x)=11+x4x4#?==IJi]10.4#^_¯abN0R=_@Ưb=…_¯bNiRª;2‰}=hiN?lm=5ICdz1+z4=ZR0dx1+x4+ZCRdz1+z4+Z0Ridy1+(iy)4=(1−i)ZR0dx1+x4+ZCRdz1+z4=2πires11+z4 z=eiπ/4=π21−i√2.†6R→∞=&limz→∞z·11+z4=0,=him3.2=5limR→∞ZCRdz1+z4=0.WuChong-shi9Qr‡Z∞0dx1+x4=√24π.Œ='˚'ظŁ~2Œ›}t1/(1+z4)z=eiπ/4Øz=ei3π/42Œ'º2Øæ=˘ºuZ∞0dx1+x100,¸π/50~Ł=o¸Ł=ł502ıŒ~łøœ2˘=Œ=ŁØŁıß~==Œ=Ł~2”10.7£⁄!(Z∞0dx1+x32»Z[=‰o:4&2π/3#5^(]10.5)2V10.5ICdz1+z3=ZR0dx1+x3+ZCRdz1+z3+Z0Rei2π/3dx1+x3=1−ei2π/3ZR0dx1+x3+ZCRdz1+z3=2πires11+z3 z=eiπ/3=2π3e−iπ/6.†6R→∞=&limz→∞z·11+z3=0,limR→∞ZCRdz1+z3=0.v{r‡Z∞0dx1+x3=2π3e−iπ/61−ei2π/3=π3cosπ6=2π3√3.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功