北大数学物理方法(B)教案15分离变量法1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

WuChong-shi()§15.1()l!#$%&’()*+!,-.∂2u∂t2−a2∂2u∂x2=0,0xl,t0,u x=0=0,u x=l=0,t≥0,u t=0=φ(x),∂u∂t t=0=ψ(x),0≤x≤l./0123456F789:;=?@,u(x,t)=X(x)T(t)FABCDX(x)EFGH9)*IJK-.L+T(t)EFGH9)*FMNOH9)*IJK-.PQRSTUVTWXYX(x)WZ[\]^_‘ab(cde2[\]^fghi_ZYλ(_‘jkelmnopqjkrstW_‘abuvwZ[\]^Wxyabrz{mw|}λy(~hnoZ[\]^nopqjkW{‘rhλc_y(hnoZ[\]^nopqjkW{‘X(x)rλWsc_y(W{‘rXYX(x)WZ[\]^_‘ab(r/12λn=nπl2,n=1,2,3,···CDXn(x)=sinnπlx.¡(¢£⁄L¥ƒ§Dn¤'(“«(‹›fifl–(†I‡·CDP'λnIXn(x)rWuChong-shi§15.1¶•‚„”»…‰(¿)2`/´12ˆ(˜¯˘˙¨‹,˚¸˝(˛ˇ—0¡λn(%)*T00(t)+λa2T(t)=0⁄L‡·Tn(t)(Tn(t)=Cnsinnπlat+Dncosnπlat.“«(˚EFOH9)*IJK-.,un(x,t)=Cnsinnπlat+Dncosnπlatsinnπlx(n=1,2,3,···).F,¡F—0¡,PEFRSOH9)*IRSJK-.F0(0¡,⁄EF!,¸–Æ-.(ª0GDCnIDn(EFDnsinnπlx=φ(x),Cnnπalsinnπlx=ψ(x).FOH9)*IJK-.PQRS(†¢£(ŁØŒ),º(QEFRS)*IRSJK-.,rQ⁄EFÆ-.æF†¡,ºu(x,t)=∞Xn=1Cnsinnπlat+Dncosnπlatsinnπlx,ıDFłøœß((⁄LOH)((u(x,t)QRSOH9)*‹RSJK-.,r=,¨r¢ˇOH9)*,(“0,QEFOH9)*(EFRSJK-.}l‘fWYCnDnæ∞Xn=1Dnsinnπlx=φ(x),(z)∞Xn=1Cnnπalsinnπlx=ψ(x)()/12¯˘Zl0Xn(x)Xm(x)dx=0,n6=m.WuChong-shi!#$%&’(()3`‹(z))Lsinmπlx(*9(Zl0φ(x)sinmπlxdx=Zl0∞Xn=1Dnsinnπlxsinmπlxdx=∞Xn=1DnZl0sinnπlxsinmπlxdx=Dm·l2.+LDn=2lZl0φ(x)sinnπlxdx.(%()(⁄LCn=2nπaZl0ψ(x)sinnπlxdx.˚§¡!,¸,rF,-.Xn(x)=sinnπlxIXm(x)=sinmπlxQ9/˛·ˇλnIλm¡CD(λn6=λm(ªn6=m)r¢£9/EFX00n(x)+λnXn(x)=0,Xn(0)=0,Xn(l)=0,IX00m(x)+λmXm(x)=0,Xm(0)=0,Xm(l)=0.¥Xm(x))LXn(x))*(¥Xn(x))LXm(x))*(‡0((Xm(x)X00n(x)−Xn(x)X00m(x))+(λn−λm)Xm(x)Xn(x)=0,‹12[0,l]›*9(ª(λn−λm)Zl0Xn(x)Xm(x)dx=Zl0[Xn(x)X00m(x)−Xm(x)X00n(x)]dx=[Xn(x)X0m(x)−Xm(x)X0n(x)] l0=0.›fi¥˚Xn(x)IXm(x)EFJK-.rλn6=λm(3Zl0Xn(x)Xm(x)dx=0,n6=m.4‹›fi34–¥˚21.CDEFH9)*2.CDEFJK-.5¥CD6CD=4“«(789:;3=X00(x)+λX(x)=0,?fl(λn−λm)Zl0Xn(x)Xm(x)dx=[Xn(x)X0m(x)−Xm(x)X0n(x)] l0@ArWuChong-shi§15.1¶•‚„”»…‰(¿)4`4BCDEFJK-.Cα1X(0)+β1X0(0)=0,α2X(l)+β2X0(l)=0,D–α1Iβ1α2Iβ2EF0(?α1Xn(0)+β1X0n(0)=0,α1Xm(0)+β1X0m(0)=0Iα2Xn(l)+β2X0n(l)=0,α2Xm(l)+β2X0m(l)=0.“α1Iβ1F0(+L Xn(0)X0n(0)Xm(0)X0m(0) =0.G“α2Iβ2F0(+LG Xn(l)X0n(l)Xm(l)X0m(l) =0.FflH2IJX00(x)+λX(x)=0,α1X(0)+β1X0(0)=0,α2X(l)+β2X0(l)=0Zl0Xn(x)Xm(x)dx=0,n6=mKLMNr4›fiJK-.OP˚0´Q´QRJK-.rFSTkXnk2≡Zl0X2n(x)dx=l2.TkXnkUVWXYZ[\]^_‘abcdefgZ1kXnk2Zl0X2n(x)dx=1hijkWXn(x)/kXnkUlZ1dmnopqrstuvZl0Xn(x)Xm(x)dx=l2δnm.YZ[\]^_wx‘aydWuChong-shi!#$%&’(()5`Fz{|}~=˚(L%Æ’rt0F(Æ‹K#›9/(Qx=0x=lF((˜‡¡π(ª‹x=0Ix=l¢£⁄¥(Q%!JK-.ƒ!)r#›§0‹§0¡F¤'(¢QÆ‹¡2S“ºflr˛ˇÆ«‹›fi’(⁄LQfl–HrF†‡6‹0F¤t(#’I9/Q12Zl0ρ∂u∂t2dxI12Zl0T∂u∂x2dx,·E(t)=12Zl0ρ∂u∂t2dx+12Zl0T∂u∂x2dx.B,¶(•¥CDƒ‚„0ß(”»E(t)=mπ2a24l2∞Xn=1n2|Cn|2+|Dn|2.…‰QGD(t¿(ª#·`TrF´¨«!,¸¡,(u1(x,t)Iu2(x,t)((v(x,t)≡u1(x,t)−u2(x,t)0!EF!,¸∂2v∂t2−a2∂2v∂x2=0,0xl,t0,v x=0=0,v x=l=0,t≥0,v t=0=0,∂v∂t t=0=0,0≤x≤l.ıł34v(x,t)=0ª⁄rˆ˜¯›⁄L˘˙(¨!Qƒrˆ`ı˚(t=0F#·0(“«L˝0F¤t(E(t)E0r§¸0!∂v∂x=0,∂v∂t=0,ªv(x,t)GDr%Æ-.JK-.(P!«GD0rT˝˛ˇU—f13.6UodE/dt=0oUƪ(oŁØ)dWuChong-shi§15.1¶•‚„”»…‰(¿)6`F3456Œº;3=1./01(9:;rslæıT(jkeł[\]^pqjk~enoWrø\œßW(e(l)ghi_ZYWnoZ[\]^nopqjk((l)yabr2./1(,¸r3./´1(,(˜01º0,rh|}fW|}lc‘r4./1(•¥CDƒ‚ß!ºDr(›fiQ=,r˛ˇ6¸(321.stWu(x,t)eł[\]^((Y‘e!ł[#$2.stWu(x,t)epqjk((Y‘WXYe%&$3.U_Y(’\e()*¿+,-./0123456789:;*=+7Cn?Dn@=φ(x)?ψ(x)AB91CDφ(x)?ψ(x)9EFABGH,-./09IJ*KLMNO1PQRST9UV1WXA+YZ[.\]^1._‘abcdef2.gebcheigjklm_‘nopq1rstu1_‘nohvwxyzhf3._‘noig{d|}~*IJ,[./0*WuChong-shi()78un(x,t)=Cnsinnπlat+Dncosnπlatsinnπlx=Ansin(ωnt+δn)sinknx,ωn=nπla,kn=nπl,Ancosδn=Cn,Ansinδn=Dn.Fun(x,t).¡¢FAnsinknx£⁄N¥ƒ9§¤P'Fsinωnt+δn£“«C‹Fωn@¡¢9›fifl1–†‡·B⁄9·fifl¶•‚fifl1„”»\]…‰Fkn–¢71@«¿N¢9`´7Fδn@”“«1=”»\]ABFknx=mπ1ˆx=mπ/kn=(m/n)l,m=0,1,2,3,···,n9¥ƒN1§˜9§¤¯–01–¢˘*˙¨⁄9†.‡ƒ1¢˘ƒ˚n+1.*Fknx=(m+1/2)π1ˆx=(2m+1)π/2kn=(2m+1)l/2n,m=0,1,2,3,···,n−19¥ƒN1§˜§¤9¸H¯–˝˛1–¢ˇ*¢ˇƒ˚n.*F—./098@,¡¢9*|x1e)*F†‡·B9⁄O1·fifl.˝Æ1ˆω1=πla,–ª1·fiflωn2@fiω19—71ωn=nω1,n=2,3,···,–ª*F⁄9fiFABGŁØŒº9*⁄1⁄9EB(ˆρB)1æR⁄9ı(ˆRłT9˛Æ)1Føœ˘fiω19˛Æ*F8ßfi?fi97{Cn}?{Dn}9“H˛ÆABGŒº9fiP'1ˆABGŒº9*WuChong-shi§15.1()8F?7∞Xn=1n2|Cn|2+|Dn|2„⁄9SU1ŁFABGŒº9*F”»\]φ(x)?ψ(x)Φ(x)=−φ(−x),−l≤x≤0,φ(x),0≤x≤l,Ψ(x)=−ψ(−x),−l≤x≤0,ψ(x),0≤x≤l,–`´–2l9`´7(–Φ(x)?Ψ(x))*,9!#$G‡ƒx=l%@*Φ(x)?Ψ(x)&’–Fourier67Φ(x)=∞Xn=1αnsinnπlx,Ψ(x)=∞Xn=1βnsinnπlx,αn=1lZl−lΦ(x)sinnπlxdx=2lZl0φ(x)sinnπlxdx,βn=1lZl−lΨ(x)sinnπlxdx=2lZl0ψ(x)sinnπlxdx.„()B*9Cn?Dn“+1Fø*αn=Dn,βn=nπalCn.Łu(x,t)=∞Xn=1Cnsinnπlat+Dncosnπlatsinnπlx=12∞Xn=1Dnhsinnπl(x−at)+sinnπl(x+at)i+12∞Xn=1Cnhcosnπl(x−at)−cosnπl(x+at)i=12∞Xn=1αnhsinnπl(x−at)+sinnπl(x+at)

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功