北大数学物理方法(B)教案16分离变量法2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

WuChong-shi()§16.1∂u∂t−κ∂2u∂x2+∂2u∂y2=0,0xa,0yb,t0,∂u∂x x=0=0,∂u∂x x=a=0,0≤y≤b,t≥0,∂u∂y y=0=0,∂u∂y y=b=0,0≤x≤a,t≥0,u t=0=φ(x,y),0≤x≤a,0≤y≤b.u(x,y,t)=v(x,y)T(t)!#v(x,y)T0(t)−κ∂2v∂x2+∂2v∂y2T(t)=0=⇒∂2v∂x2+∂2v∂y2v(x,y)=1κT0(t)T(t)=−λ$∂2v∂x2+∂2v∂y2+λv(x,y)=0,T0(t)+λκT(t)=0,%&λ’!#()*+,-./01(23456789$∂v∂x x=0=0∂v∂x x=a=0∂v∂y y=0=0∂v∂y y=b=0:;v(x,y)=X(x)Y(y)*=!#X00(x)Y(y)+X(x)Y00(y)+λX(x)Y(y)=0=⇒X00(x)X(x)+λ=−Y00(y)Y(y)=ν$X00(x)+μX(x)=0Y00(y)+νY(y)=0?@)*A./μBμ,νCλ&DEFG’HI+JKLMNOμ+ν=λ0:P3456!#Q8$RX0(0)=0,X0(a)=0CY0(0)=0,Y0(b)=0.STUX(x)VWXYX00(x)+μX(x)=0WuChong-shi§16.1Z[\]^_‘abcdef2gX0(0)=0,X0(a)=0Fhμ=0(.i+jk’X(x)=A0x+B0.(lm)3456$A0=0,B0no.pqλ=0’Grstrsu/8vwX(x)=1.xyz{|}~~~μ=0μ=0X(x)=B0,B00Fhμ6=0(.i+jk’X(x)=Asin√μx+Bcos√μx.(lm)3456Q$RA=0,√μsin√μa=0.√μa=nπrstμn=nπa2,n=1,2,3,···rsu/Xn(x)=cosnπax.μ=0Cμ0+8rstμn=nπa2,n=0,1,2,3,···,rsu/Xn(x)=cosnπax.1¡8k$¢£Y(y)+rst⁄¥Y00(y)+νY(y)=0Y0(0)=0,Y0(b)=0+kwrstνm=mπb2,m=0,1,2,3,···,rsu/Ym(x)=cosmπby.WuChong-shiƒ§¤'“«_‘‹(›)f3gfi£fl-+nCm:*=–T00(t)=A00,n=m=0,Tnm(t)=Anme−λnmκt,%†‡·,78+·Tnm(t)=Anme−λnmκt,n=0,1,2,3,···,m=0,1,2,3,···,λnm=μn+νm=nπa2+mπb2.¶•$‚G-k⁄¥+„kunm(x,y,t)=Xn(x)Ym(y)Tnm(t)=Anmcosnπaxcosmπbye−λnmκtC”ku(x,y,t)=∞Xn=0∞Xm=0unm(x,y,t)=∞Xn=0∞Xm=0Anmcosnπaxcosmπbye−λnmκt=∞Xn=0∞Xm=0Anmcosnπaxcosmπbyexp−nπa2+mπb2κt.»…56Eu(x,y,t) t=0=∞Xn=0∞Xm=0Anmcosnπaxcosmπby=φ(x,y).‰=h¿rsu/+`´ˆ-–˜¯˘/0˙¨˚¸R{Xn(x),n=0,1,2,···}+`´ˆQ˚¸R{Ym(y),m=0,1,2,···}+`´ˆ˝80%m˛ˇRJK+`´—ˆZa0Xn(x)Xn0(x)dx=a2(1+δn0)δnn0,Zb0Ym(y)Ym0(y)dy=b2(1+δm0)δmm0.&˚n=0n6=0Cm=0m6=0+‡·0+’Anm=4ab1(1+δn0)(1+δm0)Za0Zb0φ(x,y)cosnπaxcosmπbydxdy.WuChong-shi§16.2ƪ4§16.2ŁØŒºæxıłøœßæxı~łøœ0~æxı|~łøœß∂2u∂t2−a2∂2u∂x2=f(x,t),0xl,t0,u x=0=0,u x=l=0,t≥0,u t=0=0,∂u∂t t=0=0,0≤x≤l.wA–fi£lm+?2)+F-+!#+»$%C»&’(w00)W*+,-./01234567u(x,t)=v(x,t)+w(x,t),¨Plmlm8+1(LM9:;E+lm3456˝0k+¢=¨£$„kv(x,t)0¸£f(x,t)·?@AB+‡·0CDklm+EFG$lm+G„kv(x,t)∂2v∂t2−a2∂2v∂x2=f(x,t).HIu(x,t)=v(x,t)+w(x,t)J∂2u∂t2−a2∂2u∂x2=f(x,t)u x=0=0u x=l=0u t=0=0∂u∂t t=0=0=∂2v∂t2−a2∂2v∂x2=f(x,t)v x=0=0v x=l=0+∂2w∂t2−a2∂2w∂x2=0w x=0=0w x=l=0w t=0=−v t=0∂w∂t t=0=−∂v∂t t=0KLMNOv(x,t)PMQw(x,t)~KRw(x,t)=∞Xn=1Cnsinnπlat+Dncosnπlatsinnπlx,WuChong-shiƒ§¤'“«_‘‹(›)f5gSu(x,t)=v(x,t)+∞Xn=1Cnsinnπlat+Dncosnπlatsinnπlx,TUVWı∞Xn=1Dnsinnπlx=−v(x,t) t=0,∞Xn=1Cnnπalsinnπlx=−∂v(x,t)∂t t=0,XY~Z[\K]Q^_‘Cn=−2nπaZl0∂v(x,t)∂t t=0sinnπlxdx,Dn=−2lZl0v(x,0)sinnπlxdx.•aßbæxı~}c0•dæc~}efghi~ı|ø0•ß~PjMOv(x,t)0kjf(x,t)lmnopq~rl0•VWı~stuv0w16.1k-k⁄¥∂2u∂t2−a2∂2u∂x2=f(x),0xl,t0,u x=0=0,u x=l=0,t≥0,u t=0=0,∂u∂t t=0=0,0≤x≤l,%&f(x)wxyu/0Dfl–k¥+z˚{|02£+lmD’x+u/8lm8u/7vwD’x+u/u(x,t)=v(x)+w(x,t),%&v(x)NO.i+3t⁄¥v00(x)=−1a2f(x),v(0)=0,v(l)=0;}w(x,t)~NO-k⁄¥∂2w∂t2−a2∂2w∂x2=0,0xl,t0,w x=0=0,w x=l=0,t≥0,w t=0=−v(x),∂w∂t t=0=0,0≤x≤l.WuChong-shi§16.2\baf6gw16.2k-k⁄¥∂2u∂t2−a2∂2u∂x2=A0sinωt,0xl,t0,u x=0=0,u x=l=0,t≥0,u t=0=0,∂u∂t t=0=0,0≤x≤l,%&a,A0ω(wxy./0u(x,t)=v(x,t)+w(x,t),˛ˇRlm+·8Plm8u/v(x,t)vwv(x,t)=f(x)sinωt.$v(x,t)NOlmlm3456∂2v∂t2−a2∂2v∂x2=A0sinωt,0xl,t0,v x=0=0,v x=l=0,t≥0,7’f(x)$−ω2f(x)−a2f00(x)=A0,f(0)=0,f(l)=0.Glm.i+jkwf(x)=−A0ω2+Asinωax+Bcosωax.lm34568-–B=A0ω2,A=A0ω2tanωl2a.£’f(x)=−A0ω21−cosωax−tanωl2asinωax=−A0ω21−cos(ω(x−l/2)/a)cos(ωl/2a).¡–w(x,t)NO+-k⁄¥∂2w∂t2−a2∂2w∂x2=0,0xl,t0,w x=0=0,w x=l=0,t≥0,w t=0=0,∂w∂t t=0=−ωf(x),0≤x≤l.J+”kww(x,t)=∞Xn=1hCnsinnπlat+Dncosnπlatisinnπlx.WuChong-shiƒ§¤'“«_‘‹(›)f7g¸+»…568-–Dn=0,Cn=−2ωnπaZl0f(x)sinnπlxdx=−2A0ωl3π2a1−(−)nn21(nπa)2−(ωl)2.DEn=/(Cn˝w00¡–Aw(x,t)=−4A0ωl3π2a∞Xn=01(2n+1)21[(2n+1)πa]2−(ωl)2sin2n+1lπxsin2n+1lπatCu(x,t)=−A0ω21−cosω(x−l/2)/acos(ωl/2a)sinωt−4A0ωl3π2a∞Xn=01(2n+1)21[(2n+1)πa]2−(ωl)2sin2n+1lπxsin2n+1lπat.!+ω`’+Eω=(2k+1)πa/l,kwG-+‚/¨!+¡¸‰¢£⁄¥˙ƒ0w16.3k-k⁄¥∂2u∂x2+∂2u∂y2=xy,0xa,0yb,u x=0=0,u x=a=0,0≤y≤b,u y=0=φ(x),u y=b=ψ(x),0≤x≤a.§¤–+jk16x3y+f(x+iy)+g(x−iy).hu/fCg'“f(x+iy)+g(x−iy)=−a224i(x+iy)2−(x−iy)2=−16a2xy,$R+kv(x,y)=16x2−a2xyNOlm3456v(x,y) x=0=0,v(x,y) x=a=0.;u(x,y)=v(x,y)+w(x,y),WuChong-shi§16.2\baf8g8–w(x,t)NO+-k⁄¥∂2w∂x2+∂2w∂y2=0,0xa,0yb,w x=0=0,w x=a=0,0≤y≤b,w y=0=φ(x),w y=b=ψ(x)−b6x2−a2x,0≤x≤a.%&+Cfi3456«’lm+¶•‹§¤k0

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功