北大数学物理方法(B)教案17分离变量法3

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

WuChong-shi()§17.1()!#$%&u(x,t)=v(x,t)+w(x,t)’(∂2u∂t2−a2∂2u∂x2=f(x,t)u x=0=0u x=l=0u t=0=0∂u∂t t=0=0=∂2v∂t2−a2∂2v∂x2=f(x,t)v x=0=0v x=l=0+∂2w∂t2−a2∂2w∂x2=0w x=0=0w x=l=0w t=0=−v t=0∂w∂t t=0=−∂v∂t t=0)*+,-./0f(x,t)1234567’89:;-./+,1=’?9@ABC1=DEFGHIJKLMNOPQRSTU{Xn(x),n=1,2,3,···}’VWXYZ[\]^_‘’ab’cdefgu(x,t)hijklmnijkof(x,t)pqRSTUrsu(x,t)=∞Xn=1Tn(t)Xn(x),f(x,t)=∞Xn=1gn(t)Xn(x),tuvLMwxTn(t)ydEz{Tn(t)KP|TU’}~nKlm(Q)’dwglmERSTUQ{Xn(x)}nnMK{Xn(x)}jkgnRSTU’y~zjklmjk∂2u∂t2−a2∂2u∂x2=0,0xl,t0,u x=0=0,u x=l=0,t≥0OnRSX00n(x)+λnXn(x)=0,Xn(0)=0,Xn(l)=0.WuChong-shi§17.1¡¢£⁄¥ƒ§¤'“(«)‹2›fiu(x,t)f(x,t)nrsfl–lm’†‡o·’∞Xn=1T00n(t)Xn(x)−a2∞Xn=1Tn(t)X00n(x)=∞Xn=1gn(t)Xn(x).¶Xn(x)•~nlm’‚„”∞Xn=1T00n(t)Xn(x)+a2∞Xn=1λnTn(t)Xn(x)=∞Xn=1gn(t)Xn(x).v»…RSTUn‰¿’cOTn(t)•~nlmT00n(t)+λna2Tn(t)=gn(t).`’fu(x,t)nrsfl–´ˆ’˜dO∞Xn=1Tn(0)Xn(x)=0,∞Xn=1T0n(0)Xn(0)=0.»…RSTUn‰¿’y¯xTn(0)=0,T0n(0)=0.¶gijklmnU˘M’˙¨¶Laplace’cdewxTn(t)=lnπaZt0gn(τ)sinnπla(t−τ)dτ.˚¸gM’qjknRSTUrsMEv¶˚¸lMwg˝16.2Gng∂2u∂t2−a2∂2u∂x2=A0sinωt,0xl,t0,u x=0=0,u x=l=0,t≥0,u t=0=0,∂u∂t t=0=0,0≤x≤l.jknRSTU˛ˇ15.1—Gx’dLu(x,t)=∞Xn=1Tn(t)sinnπlx,fijkoA0sinωt˜q˚PQRSTUrs’A0sinωt=2A0π∞Xn=11−(−1)nnsinnπlxsinωt,–lm´ˆ’cOT00(t)+nπla2Tn(t)=2A0π1−(−1)nnsinωt,T(0)=0,T0(0)=0.gyTn(t)=2A0l2π1−(−1)nn1(nπa)2−(ωl)2sinωtWuChong-shi()‹3›−2A0ωl3π2a1−(−1)nn21(nπa)2−(ωl)2sinnπlat.‚dewx˝16.3nP¸flngu(x,t)=4A0l2π∞Xn=012n+11[(2n+1)πa]2−(ωl)2sin2n+1lπxsinωt−4A0ωl3π2a∞Xn=01(2n+1)21[(2n+1)πa]2−(ωl)2sin2n+1lπxsin2n+1lπat.Æ{’˝ª’PoissonlmnP∂2u∂x2+∂2u∂xy2=f(x,y),0xa,0yb,u x=0=0,u x=a=0,0≤y≤b,u y=0=0,u y=b=0,0≤x≤a,t˜d¶qjkRSTUrsnMwgE˝ª’dLu(x,y)=∞Xn=1Yn(y)sinnπax,f(x,y)=∞Xn=1gn(y)sinnπax.–lm’dY00n(y)−nπa2Yn(y)=gn(y),Yn(0)=0,Yn(b)=0,wxYn(y)’˜cxŁgu(x,y)EØŒº’˜deLu(x,y)=∞Xm=1Xm(x)sinmπby,f(x,y)=∞Xm=1hm(x)sinmπby,u¯xXm(x)~nijklmX00m(x)−mπb2Xm(x)=hm(x),Xm(0)=0,Xm(a)=0,wxXm(x)ydEæDıEłø1œß-./0gn(y)hm(x)123?œß’Yn(y)Xm(x)1-./+,:=EWuChong-shi§17.1¡¢£⁄¥ƒ§¤'“(«)‹4›dePnM’yfu(x,y)f(x,y)qRSTU{Xn(x)}‚qRSTU{Ym(y)}rs(U)u(x,y)=∞Xn=1∞Xm=1cnmsinnπaxsinmπby,f(x,y)=∞Xn=1∞Xm=1dnmsinnπaxsinmπby,rsUcnmwEf(x,y)K˛TU’•ecnm˜K˛nEˇUrs’t˛ŁEfnrsfl–lm’y−∞Xn=1∞Xm=1cnmnπa2+mπb2sinnπaxsinmπby=∞Xn=1∞Xm=1dnmsinnπaxsinmπby.»…RSTUn‰¿’!U’y−cnmnπa2+mπb2=dnm.{Kcnm=−dnmnπa2+mπb2.u’wgu(x,y)=−∞Xn=1∞Xm=1dnmnπa2+mπb2sinnπaxsinmπby.˚¸Mn#KØŒ$%ŁwgijklmEWuChong-shi()‹5›§17.2&’()*+,’(-./012’3456789ø:;=A6?@ABC-./19D’EFGø:;=./1E1HI;=JK./1L•-./;=œMNO•PQR./+,./;=1=?@STUVQR./+,./;=•WXYZ1[\].Z^1_‘a-./;=)bcdLeefglmng˝EŁhxijkn#i’jlm´ˆkKjknE∂2u∂t2−a2∂2u∂x2=0,0xl,t0,u x=0=μ(t),u x=l=ν(t),t≥0,u t=0=0,∂u∂t t=0=0,0≤x≤l.Ł¶M’lm’Vnfijkjk„’you(x,t)=v(x,t)+w(x,t),pv(x,t)’q~v(x,t) x=0=μ(t),v(x,t) x=l=ν(t).˚`’w(x,t)tcP~jkw(x,t) x=0=0,w(x,t) x=l=0.Prs’w(x,t)•~nlm´ˆkfKijkn’∂2w∂t2−a2∂2w∂x2=−∂2v∂t2−a2∂2v∂x2,w t=0=−v t=0,∂w∂t t=0=−∂v∂t t=0.t¶16.2—˙Ru1—nM’cdewxw(x,t)’˜cxŁgu(x,t)EFvwxy#$%[\v(x,t)LzWwv(x,t)~v(x,t) x=0=μ(t),v(x,t) x=l=ν(t),•e{n|EWuChong-shi§17.2}~ƒ~‹6›ªfit”KU’˚cVWwˇ(x,y)ny=v(x,t)n(0,μ(t))(l,ν(t))ydE˝ª’dv(x,t)=A(t)x+B(t),–’ydxB(t)=μ(t),A(t)=1lν(t)−μ(t).˜dv(x,t)=A(t)x2+B(t),A(t)=1l2ν(t)−μ(t),B(t)=μ(t),˙v(x,t)=A(t)(l−x)2+B(t)x2,A(t)=1l2μ(t),B(t)=1l2ν(t).17.1wgg∂u∂t−κ∂2u∂x2=0,0xl,t0,u x=0=Asinωt,u x=l=0,t≥0,u t=0=0,0≤x≤l.Oijknfl’dLjk„TUv(x,t)=A1−xlsinωt.{Kou(x,t)=A1−xlsinωt+w(x,t),w(x,t)~g∂w∂t−κ∂2w∂x2=−Aω1−xlcosωt,0xl,t0,w x=0=0,w x=l=0,t≥0,w t=0=0,0≤x≤l.fw(x,t)lmnijko1−x/lkqjknRSTUrs’w(x,t)=∞Xn=1Tn(t)sinnπlx,1−xl=∞Xn=12nπsinnπlx.»…Tn(t)•~ijkPlmT0n(t)+κnπl2Tn(t)=−2Aωnπcosωt´ˆTn(0)=0,˘wxTn(t)=2Aωl2nπ1κ2(nπ)4+ω2l4κ(nπ)2exph−nπl2κti−κ(nπ)2cosωt−ωl2sinωt.˚`cwŁw(x,t)’v’cOgngu(x,t)EWuChong-shi()‹7›œß1./v(x,t)’1w(x,t)16=78¡¢œß’:1w(x,t)¢œßEW’6=781=1£⁄a’¥ƒ4X§¤1u(x,t)6'ß1’“«‹›3123?fiœßE˚`cdeflxP–nWw†pnjk„TUv(x,t)’qw(x,t)•~ng‡d·EiJn¶’tcK•‚„u(x,t)nlmK•Kjkn’”w(x,t)nlmKjknEcng»’˚…‰Wwjk„TUv(x,t)˜Klmng’∂2v∂t2−a2∂2v∂x2=0.Æ{¿·`nμ(t)ν(t)’KdeO˚PnE•‚„nlmK•Kjkn’´ˆfi˚¸lMkflmjk„E17.2wgg∂2u∂t2−a2∂2u∂x2=0,0xl,t0,u x=0=0,∂u∂x x=l=Asinωt,t≥0,u t=0=0,∂u∂t t=0=0,0≤x≤l.˜ˇc¯˘NOPjk„TU’flmjk„E’Lu(x,t)=v(x,t)+w(x,t)’OijknTUfl’djk„TUv(x,t)v(x,t)=f(x)sinωt,f(x)K˙¨lmf00(x)+ωa2f(x)=0,f(0)=0,f0(l)=Ang’f(x)=Aaω1cosωlasinωax.w(x,t)•~ngK∂2w∂t2−a2∂2w∂x2=0,0xl,t0,w x=0=0,∂w∂x x=l=0,t≥0,WuChong-shi§17.2}~ƒ~‹8›w t=0=0,∂w∂t t=0=−Aacosωlasinωax,0≤x≤l.Prgw(x,t)=∞Xn=0Cnsin2n+12lπat+Dncos2n+12lπatsin2n+12lπx.»…´ˆ’dexCn=−4Aπcosωla12n+1Zl0sinωaxsin2n+12lπxdx=(−)n4Aω(2n+1)πa1ωa2−2n+12lπ2,Dn=0.f˚`wnv(x,t)w(x,t)˚’cuxŁgu(x,t)E

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功