北大数学物理方法(B)教案19球函数1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

WuChong-shi()HelmholtzLegendre1sinθddθsinθdΘdθ+λ−μsin2θΘ=0!Legendre1sinθddθsinθdΘdθ+λΘ=0,#$x=cosθ,y(x)=Θ(θ)%&’()*ddx1−x2dydx+λ−μ1−x2y=0+ddx1−x2dydx+λy=0.,-./0123’456789:;=WuChong-shi§19.1Legendre?@AB2C§19.1LegendreDEFGHILegendre3JKLMNOPQR3ST/(UVWX)YZ[\Legendre33S6#I]^=FLegendre_‘(abczdefgh)ddz1−z2dwdz+λw=0.ijklmz=±1nz=∞opqdrslm=tuvwajkmxydlmzLegendre_‘c{|}~{=Fz=0mdLegendre_‘cmtu_‘c{|z=0mc|z|1{xTaylor=wkc{dw1(z)=∞Xn=022n(2n)!Γn−ν2Γn+ν+12Γ−ν2Γν+12z2n,w2(z)=∞Xn=022n(2n+1)!Γn−ν−12Γn+1+ν2Γ−ν−12Γ1+ν2z2n+1,ν(ν+1)=λ.ak{{¡x¢£Legendre_‘c{|⁄¥ƒc§¤'=“d«‹›|{fiflc–†‡·|z=±1am_‘c{¶•‚{=a„–”c{c»…‰'x=¿w1(z)`n´ˆ˜¯˘c2n=22n(2n)!Γn−ν2Γn+ν+12Γ−ν2Γν+12∼22n(2n+1)2n+1/2e−(2n+1)√2πn−ν2n−(ν+1)/2e−n+ν/2√2πΓ−ν2n+ν+12n+ν/2e−n−(ν+1)/2√2πΓν+12=×1n.WuChong-shi˙¨˚¸˝(˛)B3Ca·ˇvw¶k—zw1(z)|z=±1cnln11−z2=∞Xn=11nz2n}=tuw1(z)|z=±1¿=z=±1dw1(z)cm=‹Legendre_‘|z=0c¶{w1(z){¡£}~–¶•d¶k=¿w2(z)`n´ˆ˜¯ic2n+1=22n(2n+1)!Γn−ν−12Γn+1+ν2Γ−ν−12Γ1+ν2∼22n(2n+2)2n+3/2e−(2n+2)√2π×n−ν−12n−ν/2e−n+(ν−1)/2√2πΓ−ν−12n+1+ν2n+(ν+1)/2e−n−1−ν/2√2πΓ1+ν2=×12n+1.vw¶k—zw2(z)|z=±1cnln1+z1−z=∞Xn=122n+1z2n+1}=tuw2(z)|z=±1¿=z=±1dw2(z)cm=Legendre_‘|z=0c{w2(z){¡£}~–d¶k=FÆx|z=1(z=−1)mcªƒ{Legendre_‘=z=±1d_‘crslm_‘|ƒ0|z−1|2ikrs{xw(z)=(z−1)ρ∞Xn=0cn(z−1)n,ŁØLegendre_‘Œx¢£|z=1mcº_‘ρ(ρ−1)+ρ=0.ρ1=ρ2=0=a·ˇLegendre_‘|z=1mªƒc¶{–d|ƒ|z−1|2{c{s¶•i¿æz=1(nz=−1)m=ı_‘{cłøxLegendre_‘|z=1mªƒc¶{Pν(z)=∞Xn=01(n!)2Γ(ν+n+1)Γ(ν−n+1)z−12n,WuChong-shi§19.1Legendre?@AB4Cœν߶Legendre{xQν(z)=12Pν(z)lnz+1z−1−2γ−2ψ(ν+1)+∞Xn=01(n!)2Γ(ν+n+1)Γ(ν−n+1)1+12+···+1nz−12n,œνßLegendreγdEulerψ(z)dΓc¿=Pν(z)(z=−1+z=∞)+Qν(z)665=WuChong-shi˙¨˚¸˝(˛)B5C§19.2Legendre‰¥ƒx2+y2+z2a2cLaplace_‘!∇2u=0,u Σ=f(Σ),ΣŁ§x2+y2+z2=a2–cfm=#£$|%«c&’¥ƒc»…‰()*+,-./012{ak•{!p+/03456|=‹789»i:;¶k(=c)•?@A‚fc¿œBC`*ŒD`ak¿œ?c_EFGc_E=aHIJwK˘LMcNOu`*ŒPφu=u(r,θ).QR”•{!|K˘Sc»…‰'=“dTMUVWFLaplace_‘|θ=0nθ=π_E–‚XY|aZm–[g\]|u(r,θ)¿θc^_=Laplace_‘‘”£K˘¯wab•{!ccdefg[–u(r,θ)|θ=0nθ=π_E–ci789=FLaplace_‘|Khmr=0‚XY|im[g\]|u(r,θ)¿rc^_=Laplace_‘‘”£K˘¯wab•{!ccdÆefg[–u(r,θ)|Khmr=0jci789=•{!|K˘Sck§¤‰'Did1r2∂∂rr2∂u∂r+1r2sinθ∂∂θsinθ∂u∂θ=0,u θ=0i7u θ=πi7u r=0i7u r=a=f(θ).ılfg=mu(r,θ)=R(r)Θ(θ),ŁØ_‘ni789Œyˆılfg¢£1sinθddθsinθdΘ(θ)dθ+λΘ(θ)=0Θ(0)i7Θ(π)i7nddrr2dR(r)dr−λR(r)=0,λdılfg¯nocp•q=Legendre_‘r–i789sXtu!=fvx=cosθ,y(x)=Θ(θ)opWuChong-shi§19.2LegendrewxyB6Cp•qλ”Xν(ν+1)tu!Œfddx1−x2dydx+ν(ν+1)y=0,y(±1)i7.z{|}~{|FLegendrex=04z=–¶wak{c‰'Æ«w¿¶cλ(ν)ak{|x=±1qd¿c=w¢_‘c{|x=±1i7ŒMλ(ν);Z=F„Legendre_‘|x=1mªƒck{Pν(x)nQν(x)2%«=Pν(x)=∞Xn=01(n!)2Γ(ν+n+1)Γ(ν−n+1)x−12n,Pν(x)|x=1md{c`*Œdi7cQν(x)=12Pν(x)lnx+1x−1−2γ−2ψ(ν+1)+∞Xn=01(n!)2Γ(ν+n+1)Γ(ν−n+1)1+12+···+1nx−12n,Qν(x)|x=1md¿c=Legendre_‘c{”Xy(x)=c1Pν(x)+c2Qν(x),M{|x=1i7efic2=0p‚c1=1=M{|x=−1mi7Œx•tuλ=ν(ν+1)„Dctu=|x=−1mPν(x)cPν(−1)=∞Xn=0(−)n(n!)2Γ(ν+n+1)Γ(ν−n+1)=−sinνππ∞Xn=0Γ(n+ν+1)Γ(n−ν)(n!)2.Stirling'x¢Γ(n+ν+1)Γ(n−ν)(n!)2∼(n+ν+1)n+ν+1/2e−n−ν−1(n−ν)n−ν−1/2e−n+ν(n+1)n+1/2e−n−1(n+1)n+1/2e−n−1∼1nWuChong-shi˙¨˚¸˝(˛)B7CF¿¶cνPν(x)|x=−1m=F\MPν(x)dŒ‚xy|x=−1mi7FM¢tu!i(¡){efMPν(x)‚d¢£⁄æ'=„Pν(x)c»…‰'a\y¥|νƒk¯=tu!c{Œdtuλl=l(l+1),l=0,1,2,3,···,tuyl(x)=Pl(x).Pl(x)d¶klßæ'œlßLegendreæ'Pl(x)=lXn=01(n!)2(l+n)!(l−n)!x−12n.QR¢£Legendreæ'|x=1mcWPl(1)=1.Legendre§L#,¤'“3I«#Legendre‹›fi,¤I«=fl–c†kLegendreæ'c§¤'WP0(x)=1,P1(x)=x,P2(x)=123x2−1,P3(x)=125x3−3x,P4(x)=1835x4−30x2+3.c‡‰·‡19.1=WuChong-shi§19.2LegendrewxyB8C19.1LegendrewxyWuChong-shi˙¨˚¸˝(˛)B9C§19.3LegendreF¶•‚„Legendreæ'cı§”dPl(x)=12ll!dldxlx2−1l.ak§¤'œRodrigues'=»tx2−1l=(x−1)l[2+(x−1)]l=lXn=0l!n!(l−n)!2l−n(x−1)l+n,12ll!dldxlx2−1l=dldxllXn=01n!(l−n)!2−n(x−1)l+n=lXn=01n!(l−n)!(l+n)!n!x−12n.aHŒˇwLegendreæ'cı§”=„Legendreæ'cı§”Y¢xLegendreæ'cl…Wl…¯Pl(x)d…ll¯Pl(x)dl¢Pl(−x)=(−)lPl(x).‰¿Pl(x)|x=1mcx¢£Pl(x)|x=−1mcPl(−1)=(−1)l.„Legendreæ'cı§”Æx`´Legendreæ'iˆæc˘„_Legendreæ'c˜¶k¯ˇ§¤'=ux˘x2−1lx2−1l=lXr=0(−)rl!r!(l−r)!x2l−2r,*L˙ælßdldxlx2−1l=dldxllXr=0(−)rl!r!(l−r)!x2l−2r=[l/2]Xr=0(−)rl!r!(l−r)!(2l−2r)!(l−2r)!xl−2r,lßLæ'cßM¨–lßabn'c–Œ˚clfLc[l/2]=¿¸¶SLegendreæ'cı§”Œ¢£Pl(x)=[l/2]Xr=0(−)r(2l−2r)!2lr!(l−r)!(l−2r)!xl−2r.„ak§¤'QRLegendreæ'Pl(x)|x=0mcWP2l(0)=(−)l(2l)!22ll!l!,P2l+1(0)=0.WuChong-shi§19.4Legendrewxy@˝˛ˇ—B10C§19.4LegendreFLegendre§L#,¤'“,¤I«,¤'“ILegendre§L6ƪLegendreŁ[−1,1]ØŒºZ1−1Pl(x)Pk(x)dx=0,k6=l.x„_‘2ˇ=$|-˜¶_ˇak=ıZ1−1xkPl(x)dx,knlqdƒk=F¿akı„cl…xæ

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功