北大数学物理方法(B)教案23柱函数2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

WuChong-shi()§23.1BesselBessel!#$%&’()*+,-(./0123456789:;=:?@ABCDE56FGHIJKLMNOPQRSTU7VWXYZ[\]^_‘abcdefgehij$GHSTVkKlmnTMLD?@ABCfopPQqRKrs]^tuvlm$UwVxyGH56zIJKLMNOPQR{U7|}M_‘~^7i=$*+,-$∂2u∂t2−c21r∂∂rr∂u∂r+1r2∂2u∂φ2=0,(23.1a)u r=0.,u r=a=0,(23.1b)u φ=0=u φ=2π,∂u∂φ φ=0=∂u∂φ φ=2π.(23.1c)%(23.1b)(23.1c)¡¢ω#£⁄(23.1a).¥ƒ§u(r,φ,t)=v(r,φ)eiωt.(23.2)¤'§“«(23.1)‹(23.1b)(23.1c)›fik=ω/cfl⁄1r∂∂rr∂v∂r+1r2∂2v∂φ2+k2v=0,v r=0.v r=a=0,v φ=0=v φ=2π,∂v∂φ φ=0=∂v∂φ φ=2π.fiv(r,φ)=R(r)Φ(φ)–†‡⁄·!#Φ00(φ)+m2Φ(φ)=0,(23.3a)Φ(0)=Φ(2π),Φ0(0)=Φ0(2π)(23.3b)1rddrrdR(r)dr+k2−m2r2R(r)=0,(23.4a)R(0).,R(a)=0.(23.4b)WuChong-shi§23.1Bessel¶•‚„”»…‰2!#(23.3)¿`´ˆ˜¯˘˙¨!#m2,m=0,1,2,3,···,!˚¸Φm(φ)=cosmφ,sinmφ.fl!#(23.4)˝˚m2¿˛ˇk2!#—%$flk2Za0R(r)R∗(r)rdr=m2Za0R(r)R∗(r)drr+Za0dR(r)drdR∗(r)drrdr,fl).!#k20$˜†x=kry(x)=R(r)fl¤(23.4a)¸Besselˇ%⁄¨§R(r)=CJm(kr)+DNm(kr).(23.5)(23.4b)%R(0).D=0˙%R(a)=0⁄Jm(ka)=0.(23.6)¤mBessel˚Jm(x)iƒ(ƪ)μ(m)ii=1,2,3,···!#(23.4)§!#k2mi=μ(m)ia!2,i=1,2,3,···,(23.7a)!˚Rmi(r)=Jm(kmir).(23.7b)˙%⁄*+,-(.ŁØ/0ωmi=μ(m)iac,(23.8)Œμ(m)imBessel˚Jm(x)iƒ$º%§˜º.Jν(x)ƒæFν−1¸˚ıJν(x).`ƒ¨łøœß˚¯º$WuChong-shi()‰3ZerosofthefunctionsJν(z)&Nν(z)1.RealzerosWhenνisreal,thefunctionsJν(z)&Nν(z)eachhaveaninfinitenumberofzeros,allofwhicharesimplewiththepossibleexceptionofz=0.Fornon-negativeνthesthpositivezerosofthesefunctionsaredenotedbyjν,sandnν,srespectively.sj0,sj1,sn0,sn1,s12.404833.831710.893582.1971425.520087.015593.957685.4296838.6537310.173477.068058.59601411.7915313.3236910.2223511.74915514.9309216.4706313.3611014.89744618.0710619.6158616.5009218.04340721.2116422.7600819.6413121.18807824.3524725.9036722.7820324.33194927.4934829.0468325.9229627.475291030.6346132.1896829.0640330.618292.McMahon’sexpansionsforlargezerosjν,s,nν,s∼β−μ−18β−4(μ−1)(7μ−31)3(8β)3−32(μ−1)(83μ2−982μ+3779)15(8β)5−64(μ−1)(6949μ3−153855μ2+1585743μ−6277237)105(8β)7−······,sν,μ=4ν2,β=s+ν2−14π,forjν,ss+ν2−34π,fornν,s3.ComplexzerosofJν(z)Whenν≥−1thezerosofJν(z)areallreal.Ifν−1andνisnotanintegerthenumberofcomplexzerosofJν(z)istwicetheintegerpartof(−ν);iftheintegerpartof(−ν)isoddtwoofthesezeroslieontheimaginaryaxis.4.ComplexzerosofNν(z)WhenνisrealthepatternofthecomplexzerosofNν(z)dependsonthenon-integerpartofν.Attentionisconfinedheretothecaseν=n,apositiveintegerorzero.WuChong-shi§23.1Bessel¶•‚„”»…‰4ZerosofNn(z)Thefigure23.1showstheapproximatedistributionofthecomplexzerosofNn(z)intheregion|argz|≤π.Thefigureissymmetricalabouttherealaxis.Thetwocurvesontheleftextendtoinfinity,havingtheasymptotesImz=±12ln3=±0.54931......Thereareaninfinitenumberofzerosneareachofthesecurves.Thetwocurvesextendingfromz=−ntoz=nandboundinganeye-shapeddomainintersecttheimaginaryaxisatthepoints±i(na+b),whereFigure23.1ZerosofNn(z)a=qt20−1=0.66274......b=12q1−t−20ln2=0.19146......andt0=1.19968......isthepositiverootofcotht=t.Therearenzerosneareachofthesecurves.ComplexzerosofN0(z)ComplexzerosofN1(z)RealpartImaginarypartRealpartImaginarypart−2.403020.53988−0.502740.78624−5.519880.54718−3.833530.56236−8.653670.54841−7.015900.55339WuChong-shi()‰5¸–†‡˘º⁄!˚$¸flı⁄!˚$!˚Rmi(r)=Jm(kmir)1rddrrdJm(kmir)dr+k2mi−m2r2Jm(kmir)=0,(23.9a)Jm(0).,Jm(kmia)=0.(23.9b)ı˚R(r)=Jm(kr)1rddrrdJm(kr)dr+k2−m2r2Jm(kr)=0,(23.10a)Jm(0)..(23.10b)˙Œk¸˚fl.Jm(ka)=0$rJm(kr)rJm(kmir)!(23.9a)(23.10a)Jm(kr)ddrrdJm(kmir)dr+k2mi−m2r2rJm(kmir)Jm(kr)=0,Jm(kmir)ddrrdJm(kr)dr+k2−m2r2rJm(kmir)Jm(kr)=0,#›$%[0,a]º&⁄k2mi−k2Za0Jm(kmir)Jm(kr)rdr=rJm(kmir)dJm(kr)dr−Jm(kr)dJm(kmir)dr r=ar=0.«(23.9b)(23.10b)fl¤ºæ’¸k2mi−k2Za0Jm(kmir)Jm(kr)rdr=−kmiaJm(ka)J0m(kmia).(23.11)(ł¯·)*++,-.$++k=kmj6=kmi$ı.Jm(kmja)=0/'(23.11)“01¸0$2˙kmj6=kmiflZa0Jm(kmir)Jm(kmjr)rdr=0,kmi6=kmj,(23.12)3¯˘˙!#!˚$%[0,a]ºfl45r$6++k=kmiı(23.11)“·17¸0$(łfl¤(23.11)“·18flk2mi−k29k→kmi⁄Za0J2m(kmir)rdr=−limk→kmikmiak2mi−k2Jm(ka)J0m(kmia)=a22[J0m(kmia)]2.(23.13)!˚Jm(kmir):$;’¤!#(23.9)r=a1´(23.9b)=¸?@?Afl?B$CºflD@++EF1rddrrdR(r)dr+k2−m2r2R(r)=0,(23.14a)WuChong-shi§23.1Bessel¶•‚„”»…‰6R(0).,αR0(a)+βR(a)=0.(23.14b);’α6=0,β=0?;’α=0,β6=0?;’αβ7¸0¸@?$˙Bessel˚GHIJKLMæF;’˚f(r)$%[0,a]ºNOPL..ÆQ!˚Jm(kir)RSf(r)=∞Xi=1biJm(kir),(23.15)ŒJm(kir)!#(23.14)§ˇRS˚¸bi=Za0f(r)Jm(kir)rdrZa0J2m(kir)rdr.(23.16)⁄T˚$%[δ,a−δ](δ0)ºUVW$ˆ˝XY[15],17.33Z$[XA\.]^_RS)‘$WuChong-shi()‰7a23.1*bcd$e.f*bgh¸a$i(ł˘[jbz3¸*b$;’bklmno¸0pl¸u0f(r)q%brlm†$stlmuuφ,z3u=u(r,t)$¨)§∂u∂t−κr∂∂rr∂u∂r=0,(23.17a)u r=0.,u r=a=0,(23.17b)u t=0=u0f(r)(23.17c)v)$wxyz{')§§u(r,t)=∞Xi=1ciJ0μiraexp−κμia2t,(23.18)ŒμiJ0(x)iƒ$«p.u(r,t) t=0

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功