好文供参考!1/14电路实验报告精选4篇【引读】这篇优秀的文档“电路实验报告精选4篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!电路实验报告【第一篇】一、实验题目利用类实现阶梯型电阻电路计算二、实验目的利用类改造试验三种构造的计算程序,实现类的封装。通过这种改造理解类实现数据和功能封装的作用,掌握类的设计与编程。三、实验原理程序要求用户输入的电势差和电阻总数,并且验证数据的有效性:电势差必须大于0,电阻总数必须大于0小于等于100的偶数。再要求用户输入每个电阻的电阻值,并且验证电阻值的有效性:必须大于零。此功能是由类CLadderNetwork的InputParameter()函数实现的。且该函数对输入的数据进行临界判断,若所输入数据不满足要求,要重新输入,直到满足要求为止。本实验构造了两个类,一个CResistance类,封装了电阻好文供参考!2/14的属性和操作,和一个CLadderNetwork类,封装了阶梯型电阻电路的属性和操作。用户输入的电势差、电阻总数、电阻值,并赋给CladderNetwork的数据,此功能是由类CLadderNetwork的InputParameter函数实现的。输出用户输入的电势差、电阻总数、电阻值,以便检查,,此功能是由类CLadderNetwork的PrintEveryPart()函数实现的。根据用户输入的电势差、电阻总数、电阻值换算出每个电阻上的电压和电流。此功能是由类CLadderNetwork的Calculate()函数实现的。最后输出每个电阻上的电压和电流,此功能是由类CLadderNetwork的PrintResult()函数实现的。此程序很好的体现了面向对象编程的技术:封装性:类的方法和属性都集成在了对象当中。继承性:可以继承使用已经封装好的类,也可以直接引用。多态性:本实验未使用到多态性。安全性:对重要数据不能直接操作,保证数据的安全性。以下是各个类的说明:classCResistance//电阻类private:doublevoltage;好文供参考!3/14doubleresistance;doublecurrent;public:voidInitParameter();//初始化数据voidSetResist(doubler);//设置resistance的值voidSetCur(doublecur);//设置current的值voidSetVol(doublevol);//设置voltage的值voidCalculateCurrent();//由电阻的电压和电阻求电流doubleGetResist(){returnresistance;}//获得resistance的值保证数据的安全性doubleGetCur(){returncurrent;}//获得current的值doubleGetVol(){returnvoltage;}//获得voltage的值classCResistance//电阻类{private:CResistanceresists[MAX_NUM];//电阻数组intnum;doublesrcPotential;public:voidInitParameter();//初始化数据好文供参考!4/14voidInputParameter();//输入数据voidCalculate();//计算voidPrintEveryPart();//显示输入的数据以便检查voidPrintResult();//显示结果四、实验结果程序开始界面:错误输入-1(不能小于0)错误输入0(不能为0)输入正确数据3输入错误数据-1输入错误数据0输入正确数据4同样给电阻输入数据也必须是正数现在一次输入2,2,1,1得到正确结果。基尔霍夫定律实验报告【第二篇】一、实验目的(1)加深对戴维南定理和诺顿定理的理解。(2)学习戴维南等效参数的各种测量方法。(3)理解等效置换的概念。(4)学习直流稳压电源、万用表、直流电流表和电压表的正确使用方法。好文供参考!5/14二、实验原理及说明(1)戴维南定理是指—个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和一个电阻的串联组合来等效置换。此电压源的电压等于该端口的开路电压UOC,而电阻等于该端口的全部独立电源置零后的输入电阻,如图2-l所示。这个电压源和电阻的串联组合称为戴维南等效电路。等效电路中的电阻称为戴维南等效电阻Req。所谓等效是指用戴维南等效电路把有源一端口网络置换后,对有源端口(1-1')以外的电路的求解是没有任何影响的,也就是说对端口l-1'以外的电路而言,电流和电压仍然等于置换前的值。外电路可以是不同的。(2)诺顿定理是戴维南定理的对偶形式,它指出一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合来等效置换,电流源的电流等于该一端口的短路电流Isc,而电导等于把该—端口的全部独立电源置零后的输入电导Geq=1/Req,见图2-l。(3)戴维南—诺顿定理的等效电路是对外部特性而言的,也就是说不管是时变的还是定常的,只要含源网络内部除独立的电源外都是线性元件,上述等值电路都是正确的。图2-1一端口网络的等效置换(4)戴维南等效电路参数的测量方法。开路电压Uoc的测量比较简单,可以采用电压表直接测量,也可用补偿法测量;好文供参考!6/14而对于戴维南等效电阻Req的取得,可采用如下方:网络含源时用开路电压、短路电流法,但对于不允许将外部电路直接短路的网络(例如有可能因短路电流过大而损坏网络内部器件时)不能采用此法;网络不含源时,采用伏安法、半流法、半压法、直接测量法等。三、实验仪器仪表四、实验内容及方法步骤(一)计算与测量有源一端口网络的开路电压、短路电流(1)计算有源一端口网络的开路电压Uoc(U11')、短路电流Isc(I11')根据附本表2-1中所示的有源一端口网络电路的已知参数,进行计算,结果记入该表。(2)测量有源一端口网络的开路电压Uoc,可采用以下几种方法:1)直接测量法。直接用电压表测量有源一端口网络1-1'端口的开路电压,见图2-2电路,结果记入附本表2-2中。图2-2开路电压、短路电流法图2-3补偿法二、补偿法三2)间接测量法。又称补偿法,实质上是判断两个电位点是否等电位的方法。由于使用仪表和监视的方法不同,又分为补偿法一、补偿法二、补偿法三。补偿法一:用发光管判断等电位的方法,利用对两个正反连接的发光管的亮与不亮的直接观察,进行发光管两端是否接好文供参考!7/14近等电位的判断。可自行设计电路。此种方法直观、简单、易行又有趣味,但不够准确。可与电压表、毫伏表和电流表配合使用。具体操作方法,留给同学自行考虑选作。补偿法二:用电压表判断等电位。如图2-3所示,把有源一端口网络端口的1'与外电路的2'端连成一个等位点;Us两端外加电压,起始值小于开路电压Ull';短接电位器Rw和发光管D1、D2,这样可保证外加电压Us正端2与有源一端口开路电压正端1直接相对,然后把电压表接到1、2两端后,再进行这两端的电位比较。经过调节外加电源Us的输出电压压,调到1、2两端所接电压表指示为零时,即说明1端与2端等电位,再把l、2端断开后,测外加电源Us的电压值,即等于有源一端口网络的开路电压Uoc,此值记入附本表2-2中。补偿法三:用电流表或检流计判断等电位的方法,条件与方法同上,当调到l、2两端所接电压表指示为零时,再换电流表或检流计接到l、2两端上,见图2-3。微调外加电源Us的电压使电流表或检流计指示为0(注意一般电源电压调量很小),再断开电流表或检流计后,用电压表去测外加电源Us的电压值,应等于Uoc,此结果对应记入附本表2-2。此方法比用电压表找等电位的方法更准确,但为了防止被测两端1、2间电位差过大会损坏电流表,所以一定要在电压表指示为零后,再把电流表或检流计换接上。以上方法中,补偿法一测量结果误差较大,补偿法三测量好文供参考!8/14结果较为精确,但也与电流表灵敏度有关。(二)计算与测量有源一端口网络的。等效电阻Req(1)计算有源一端口网络的等效电阻Req。当一端口网络内部无源时(把双刀双投开关K1合向短路线),计算有源一端口网络的等效电阻尺Req。电路参数见附本表2-1中,把计算结果记入该表中。(2)测量有源一端口网络的等效电阻只Req。可根据一端口网络内部是否有源,分别采用如下方法测量:1)开路电压、短路电流法。当一端口网络内部有源时(把双刀双投开关K1合向电源侧),见图2-2所示,USN=30V不变,测量有源一端口网络的开路电压和短路电流Isc。把电流表接l-1'端进行短路电流的测量。测前要根据短路电流的计算选择量程,并注意电流表极性和实际电流方向,测量结果记入附本表2-3,计算等效电阻Req。2)伏安法。当一端口网络内部无源时(把双刀双投开关Kl合向短路线侧),整个一端口网络可看成一个电阻,此电阻值大小可通过在一端口网络的端口外加电压,测电流的方法得出,见图2-4。具体操作方法是外加电压接在Us两端,再把l'、2'两端相连,把发光管和电位器Rw短接,电流表接在1、2两端,此时一端口网络等效成一个负载与外加电源Us构成回路,Us电源电压从0起调到使电压表指示为1OV时,电流Is2与电压值记入附本表2-3,并计算一端口网络等效电阻好文供参考!9/14Req=Us/IS2。图2-4伏安法图2-5半流法3)半流法。条件同上,只是在上述电路中再串进一个可调电位器Rw(去掉Rw短接线)如图2-5所示,外加电源Us电压10V不变。当调Rw使电流表指示为伏安法时电流表的指示的一半时,即I's2=Is2/2,此时电位器Rw的值等于一端口网络等效电阻Req,断开电流表和外加电源Us,测Rw值就等于是及Req,结果记入附本表2-3。4)半压法。半压法简单、实用,测试条件同上,见图2-6。把1、2两端直接相连,外加电源Us=10V,调Rw使URw=(1/2)Us时,说明Rw值即等于一端口网络等效电阻Req,断开外接电源Us,再测量Rw的值,结果记入附本表2-3。5)直接测量法。当一端口网络内部无源时,如图2-7所示,可用万用表欧姆档测量或直流电桥直接测量1-1'两端电阻Req(此种方法只适用于中值、纯电阻电路),测试结果记入附本表2-3中。图2-6半压法图2-7直接测量法说明:以上各方法测出的值均记入附本表2-3中,计算后进行比较,并分析判断结果是否正确。(3)验证戴维南定理,理解等效概念:1)戴维南等效电路外接负载。如图2-8(a)所示,首先组成一个戴维南等效电路,即用外电源Us(其值调到附本表2-2好文供参考!10/14用直接测量法测得的Uoc值)与戴维南等效电阻R5=Req相串后,外接R5=100Ω的负载,然后测电阻R6两端电压UR6和流过R6的电流值IR6,记入附本表2-4。图2-8验证戴维南定理(a)戴维南等效电路端口负载R6;(b)N网络的端口接负载R62)N有源网络1-1'端口外接负载。如图2-8(b)所示,同样接R6=100Ω的负载,测电压UR6与电流IR6,结果记入附本表2-4中,与1)测试结果进行比较,验证戴维南定理(4)验证诺顿定理,理解等效概念:1)诺顿等效电路外接负载。如图2-9(a)所示,首先组成一个诺顿等效电路,即用外加电流源Is(其值调到附本表2-3中开路电压、短路电流法测得的短路电流Isc值)与戴维南等效电阻R5=Req并后,外接R6=100Ω的负载,然后测电阻R6两端电压UR6和流过R6的电流值IR6,记入本表2-5。采用此方法时注意,由于电流源不能开路,具体操作要在教师具体指导下进行,否则极易损坏电流源。图2-9验证诺顿定理等效电路(a)诺顿等效电路端口接负载R6;(b)N网络的端口接负载R62)与上述(3)之2)中的测试结果进行比较,参阅图2-8(b),验证诺顿定理。好文供参考!11/14五、测试记录表2-1戴维南等效参数计算表2-2等效电压源电压Uoc测量结果表2-3戴维