24G无线技术-ZIGBEE浅谈

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.4G无线技术--Zigbee浅谈导读:Zigbee是一种新兴的短距离、低速率、低功耗无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。它此前被称作“HomeRFLite”或“FireFly”无线技术,主要用于近距离无线连接。o关键字o2.4G无线技术Zigbeezigbee概述“ZigBee”是什么?从字面上猜像是一种蜜蜂。因为“ZigBee”这个词由“Zig”和“Bee”两部分组成,“Zig”取自英文单词“zigzag”,意思是走“之”字形,“bee”英文是蜜蜂的意思,所以“ZigBee”就是跳着“之”字形舞的蜜蜂。不过,ZigBee并非是一种蜜蜂,事实上,它与蓝牙类似是一种新兴的短距离无线通信技术,国内也有人翻译成“紫蜂”。这只蜜蜂的来头还是要从它的历史开始说起,早在上世纪末,就已经有人在考虑发展一种新的通信技术,用于传感控制应用(sensorandcontrol),这个想法后来在IEEE802.15工作组当中提出来,于是就成立了TG4工作组,并且制定了规范IEEE802.15.4。但是IEEE802的规范只专注于底层,要达到产品的互操作和兼容,还需要定义高层的规范,于是2002年ZigBeeAlliance成立,正式有了“ZigBee”这个名词。两年之后,ZigBee的第一个规范ZigBeeV1.0诞生,但这个规范推出的比较仓促,存在一些错误,并不实用。此后ZigBeeAlliance又经过两年的努力,推出了新的规范ZigBee2006,这是一个比较完善的规范。据联盟最新的消息,今年年底将会发布更新版本的规范ZigBee2007,这个版本增加了一些新的特性。Zigbee是一种新兴的短距离、低速率、低功耗无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。它此前被称作“HomeRFLite”或“FireFly”无线技术,主要用于近距离无线连接。它有自己的无线电标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很低的功耗,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,因此它们的通信效率非常高。最后,这些数据就可以进入计算机用于分析或者被另外一种无线技术如WiMax收集。从ZigBee的发展历史可以看到,它和IEEE802.15.4有着密切的关系,事实上ZigBee的底层技术就是基于IEEE802.15.4的,因此有一种说法认为ZigBee和IEEE802.15.4是同一个东西,或者说“ZigBee”只是IEEE802.15.4的名字而已,其实这是一种误解。实际上ZigBee和IEEE802.15.4的关系,有点类似于WiMAX和IEEE802.16,Wi-Fi和IEEE802.11,Bluetooth和IEEE802.15.1。“ZigBee”可以看作是一个商标,也可以看作是一种技术,当把它看作一种技术的时候,它表示一种高层的技术,而物理层和MAC层直接引用IEEE802.15.4。事物是不断的发展变化的,尤其是通信技术,可以想象将来的ZigBee可能不会使用IEEE802.15.4定义的底层,就跟蓝牙(Bluetooth)宣布下一代底层采用UWB技术一样,但是“ZigBee”这个商标以及高层的技术还会继续保留。ZigBee协议栈速读我们无法预料将来ZigBee会基于怎样的底层技术,只好从它现在的底层——IEEE802.15.4开始了解,IEEE802.15.4包括物理层和MAC层两部分。ZigBee工作在三种频带上,分别是用于欧洲的868MHz频带,用于美国的915MHz频带,以及全球通用的2.4GHz频带,但这三个频带的物理层并不相同,它们各自的信道带宽分别是0.6MHz,2MHz和5MHz,分别有1个,10个和16个信道。不同频带的扩频和调制方式也有所区别,虽然都使用了直接序列扩频(DSSS)的方式,但从比特到码片的变换方式有比较大的差别;调制方面都使用了调相技术,但868MHz和915MHz频段采用的是BPSK,而2.4GHz频段采用的是OQPSK。我们可以以2.4GHz频段为例看看发射机基带部分的框图(如图1),可以看到物理层部分非常简单,而IEEE802.15.4芯片的低价格正是得益于底层的简单性。可能我们会担心它的性能,但我们可以再看看它和Bluetooth/IEEE802.15.1以及WiFi/IEEE802.11的性能比较(如图2),在同样比特信噪比的情况下,IEEE802.15.4要优于其他两者。直接序列扩频技术具有一定的抗干扰效果,同时在其他条件相同情况下传输距离要大于跳频技术。在发射功率为0dBm的情况下,Bluetooth通常能有10m作用范围,而基于IEEE802.15.4的ZigBee在室内通常能达到30~50m作用距离,在室外如果障碍物较少,甚至可以达到100m作用距离;同时调相技术的误码性能要优于调频和调幅技术。因此综合起来,IEEE802.15.4具有性能比较好的物理层。另一方面,我们可以看到IEEE802.15.4的数据速率并不高,对于2.4GHz频段只有250kb/s,而868MHz频段只有20kb/s,915MHz频段只有40kb/s。因此我们完全可以把它归为低速率的短距离无线通信技术。图1IEEE802。15.4物理层2.4GHz频段发射机基带框图图2几种无线通信技术性能比较物理层的上面是MAC层,它的核心是信道接入技术,包括时分复用GTS技术和随机接入信道技术CSMA/CA。不过ZigBee实际上并没有对时分复用GTS技术进行相关的支持,因此我们可以暂不考虑它,而专注于CSMA/CA。ZigBee/IEEE802.15.4的网络所有节点都工作在同一个信道上,因此如果邻近的节点同时发送数据就有可能发生冲突。为此MAC层采用了CSMA/CA的技术,简单来说,就是节点在发送数据之前先监听信道,如果信道空闲则可以发送数据,否则就要进行随机的退避,即延迟一段随机时间,然后再进行监听,这个退避的时间是指数增长的,但有一个最大值,即如果上一次退避之后再次监听信道忙,则退避时间要增倍,这样做的原因是如果多次监听信道都忙,有可能表明信道上的数据量大,因此让节点等待更多的时间,避免繁忙的监听。通过这种信道接入技术,所有节点竞争共享同一个信道。在MAC层当中还规定了两种信道接入模式,一种是信标(beacon)模式,另一种是非信标模式。信标模式当中规定了一种“超帧”的格式,在超帧的开始发送信标帧,里面含有一些时序以及网络的信息,紧接着是竞争接入时期,在这段时间内各节点以竞争方式接入信道,再后面是非竞争接入时期,节点采用时分复用的方式接入信道,然后是非活跃时期,节点进入休眠状态,等待下一个超帧周期的开始又发送信标帧。而非信标模式则比较灵活,节点均以竞争方式接入信道,不需要周期性的发送信标帧。显然,在信标模式当中由于有了周期性的信标,整个网络的所有节点都能进行同步,但这种同步网络的规模不会很大。实际上,在ZigBee当中用得更多的可能是非信标模式。MAC层往上就属于ZigBee真正定义的部分了,我们可以参看一下ZigBee的协议栈(图3)。底层技术,包括物理层和MAC层由IEEE802.15.4制定,而高层的网络层、应用支持子层(APS)、应用框架(AF)、ZigBee设备对象(ZDO)和安全组件(SSP),均由ZigBeeAlliance所制定。图3ZigBee协议栈这些部分当中最下面的是网络层。和其他技术一样,ZigBee网络层的主要功能是路由,路由算法是它的核心。目前ZigBee网络层主要支持两种路由算法—树路由和网状网路由。树路由采用一种特殊的算法,具体可以参考ZigBee的协议栈规范。它把整个网络看作是以协调器为根的一棵树,因为整个网络是由协调器所建立的,而协调器的子节点可以是路由器或者是末端节点,路由器的子节点也可以是路由器或者末端节点,而末端节点没有子节点,相当于树的叶子。这种结构又好像蜂群的结构,协调器相当于蜂后,是唯一的,而路由器相当于雄蜂,数目不多,末端节点则相当于数量最多的工蜂。其实有很多地方仔细一想,就可以发现ZigBee和蜂群的许多暗合之处。树路由利用了一种特殊的地址分配算法,使用四个参数—深度、最大深度、最大子节点数和最大子路由器数来计算新节点的地址,于是寻址的时候根据地址就能计算出路径,而路由只有两个方向—向子节点发送或者向父节点发送。树状路由不需要路由表,节省存储资源,但缺点是很不灵活,浪费了大量的地址空间,并且路由效率低,因此常常作为最后的路由方法,或者干脆不用。ZigBee当中还有一种路由方法是网状网路由,这种方法实际上是AODV路由算法的一个简化版本,非常适合于低成本的无线自组织网络的路由。它可以用于较大规模的网络,需要节点维护一个路由表,耗费一定的存储资源,但往往能达到最优的路由效率,而且使用灵活。除了这两种路由方法,ZigBee当中还可以进行邻居表路由,其实邻居表可以看作是特殊的路由表,只不过只需要一跳就可以发送到目的节点。网络层的上面是应用层,包括了APS、AF和ZDO几部分,主要规定了一些和应用相关的功能,包括端点(endpoint)的规定,还有绑定(binding)、服务发现和设备发现等等。其中端点是应用对象存在的地方,ZigBee允许多个应用同时位于一个节点上,例如一个节点具有控制灯光的功能,又具有感应温度的功能,又具有收发文本消息的功能,这种设计有利于复杂ZigBee设备的出现。而绑定是用于把两个“互补的”应用联系在一起,如开关应用和灯的应用。更通俗的理解,“绑定”可以说是通信的一方了解另一方的通信信息的方法,比如开关需要控制“灯”,但它一开始并不知道“灯”这个应用所在的设备地址,也不知道其端点号,于是它可以广播一个消息,当“灯”接收到之后给出响应,于是开关就可以记录下“灯”的通信信息,以后就可以根据记录的通信信息去直接发送控制信息了。服务发现和设备发现是应用层需要提供的,ZigBee定义了几种描述符,对设备以及提供的服务可以进行描述,于是可以通过这些描述符来寻找合适的服务或者设备。ZigBee还提供了安全组件,采用了AES128的算法对网络层和应用层的数据进行加密保护,另外还规定了信任中心(trustcenter)的角色—全网有一个信任中心,用于管理密钥和管理设备,可以执行设置的安全策略。Zigbee的基础是IEEE802.15.4(如下图1所示),这是IEEE无线个人区域网(PersonalAreaNetwork,PAN)工作组的一项标准,被称作IEEE802.15.4(Zigbee)技术标准。IEEE仅处理低级MAC层和物理层协议,因此Zigbee联盟对其网络层协议和API进行了标准化(如下图2所示)。完全协议用于一次可直接连接到一个设备的基本节点的4K字节或者作为Hub或路由器的协调器的32K字节。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。Zigbee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其它节点获得。ZigBee性能分析面对ZigBee协议栈作了一些介绍,要知道ZigBee能胜任什么工作,还需要作进一步的分析,主要有几个方面:数据速率、可靠性、时延、能耗特性、组网和路由。ZigBee的数据速率比较低,在2.4GHz的频段也只有250kb/s,而且这只是链路上的速率,除掉帧头开销、信道竞争、应答和重传,真正能被应用所利用的速率可能不足100kb/s,并且这余下的速率也可能要被邻近多个节点和同一个节点的多个应用所瓜分。所以我们不能奢望ZigBee去做一些如传输视频之类的高难度的事情,起码目前是这样,而应该聚焦于一些低速率的应用,比如人们早就给它找好的一个应用领域—传感和控制。至于可靠性,ZigBee有很多方面进行保证,首先是物理层采用了扩频技术,能够在一定程度上抵抗干扰,而MAC层和应用层(APS部分)有应答重传功能,另外MAC层的CSMA机制使节点发送之前先监听信道,也可以

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功