2023年七年级数学二元一次方程组教案(精选4篇)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!2023年七年级数学二元一次方程组教案(精选4篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“2023年七年级数学二元一次方程组教案(精选4篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!元一次方程教案【第一篇】教学目标知识目标了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。能力目标通过讨论和练习,进一步培养学生的观察、比较、分析的能力。情感目标通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。重点二元一次方程组的含义难点判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。教学过程一、引入、实物投影1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言)这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数;②、含未知数的次数是一次参考资料,少熬夜!练习(投影)下列方程有哪些是二元一次方程+2y=1xy+x=13x-=5x2-2=3xxy=12x(y+1)=c2x-y=1x+y=0二、议一议、师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成x-y=2x+1=2(y-1)像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。如:2x+3y=35x+3y=8x-3y=0x+y=8三、做一做、1、x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?2、X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?x=6,y=2是方程x+y=8的一个解,记作x=6同样,x=5y=2y=3也是方程x+y=8的一个解,同时x=5又是方程5x+3y=34的一个解,y=3四、随堂练习(P103)五、小结:1、含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。2、二元一次方程的解是一个互相关联的两个数值,它有无数个解。3、含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。六、教后感:七、自备部分元一次方程教案【第二篇】一、复习引入(学生活动)解下列方程:(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)二、探索新知(学生活动)请同学们口答下面各题。(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?参考资料,少熬夜!(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。因此,上面两个方程都可以写成:(1)x(2x+1)=0(2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12(2)3x=0或x+2=0,所以x1=0,x2=-2(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。例1解方程:(1)=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略(方程一边为0,另一边可分解为两个一次因式乘积)练习:下面一元二次方程解法中,正确的是()A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2=x,两边同除以x,得x=1三、巩固练习教材第14页练习1,2四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0五、作业布置教材第17页习题6,8,10,11七年级数学二元一次方程组教案范文3:二元一次方程组【第三篇】一。教学目标:1.认知目标:1)了解二元一次方程组的概念。2)理解二元一次方程组的解的概念。3)会用列表尝试的方法找二元一次方程组的解。2.能力目标:1)渗透把实际问题抽象成数学模型的思想。2)通过尝试求解,培养学生的探索能力。3.情感目标:参考资料,少熬夜!1)培养学生细致,认真的学习习惯。2)在积极的教学评价中,促进师生的情感交流。二。教学重难点重点:二元一次方程组及其解的概念难点:用列表尝试的方法求出方程组的解。三。教学过程(一)创设情景,引入课题1.本班共有40人,请问能确定男_各几人吗?为什么?(1)如果设本班男生x人,_y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2.男生比_多了2人。设男生x人,_y人。方程如何表示?x,y的值是多少?3.本班男生比_多2人且男_共40人。设该班男生x人,_y人。方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。4.点明课题:二元一次方程组。[设计意图:从学生身边取数据,让他们感受到生活中处处有数学](二)探究新知,练习巩固1.二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。](2)练习:判断下列是不是二元一次方程组:x+y=3,x+y=200,2x-3=7,3x+4y=3y+z=5,x=y+10,2y+1=5,4x-y2=2学生作出判断并要说明理由。2.二元一次方程组的解的概念(1)由学生给出引例的答案,教师指出这就是此方程组的解。(2)练习:把下列各组数的题序填入图中适当的位置:x=1;x=-2;x=;-x=y=0;y=2;y=1;y=方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。2x+3y=2(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。y=+2a=2y参考资料,少熬夜!(三)合作探索,尝试求解现在我们一起来探索如何寻找方程组的解呢?1.已知两个整数x,y,试找出方程组3x+y=8的解。2x+3y=10学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。提炼方法:列表尝试法。一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验。]2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。由学生独立完成,并分析讲解。(四)课堂小结,布置作业1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)2.你还有什么问题或想法需要和大家交流?3.作业本。教学设计说明:1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。3.本课在设计时对教材也进行了适当改动。例题方面考虑到数_时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。元一次方程教案【第四篇】教学目标知识与技能(1)初步理解二元一次方程和一次函数的关系;(2)掌握二元一次方程组和对应的两条直线之间的关系;(3)掌握二元一次方程组的图像解法。过程与方法参考资料,少熬夜!(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。情感与态度(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系。教学难点数形结合和数学转化的思想意识。教学准备教具:多媒体课件、三角板。学具:铅笔、直尺、练习本、坐标纸。教学过程第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)内容:1、方程x+y=5的解有多少个?是这个方程的解吗?2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1)以二元一次方程的解为坐标的点都在相应的函数图像上;(2)一次函数图像上的点的坐标都适合相应的二元一次方程。第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)内容:1、解方程组2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。3、方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;参考资料,少熬夜!(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。第三环节典型例题(10分钟,学生独立解决)探究方程与函数的相互转化内容:例1用作图像的方法解方程组例2如图,直线与的交点坐标是。第四环节反馈练习(10分钟,学生解决全班交流)内容:1、已知一次函数与的图像的交点为,则。2、已知一次函数与的图像都经过点A(—2,0),且与轴分别交于B,C两点,则的面积为()(A)4

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功