全日制义务教育数学课程标准(修改稿)目录前言.............................................................2第一部分基本理念与设计思路........................................2一、基本理念....................................................2二、设计思路....................................................3第二部分课程目标..................................................7一、总体目标....................................................7二、学段目标....................................................8第三部分内容标准.................................................12第一学段(1~3年级)...........................................12一、数与代数...............................................12二、图形与几何.............................................13三、统计与概率.............................................14四、综合与实践.............................................14第二学段(4~6年级)...........................................14一、数与代数...............................................14二、图形与几何.............................................16三、统计与概率.............................................17四、综合与实践.............................................17第三学段(7~9年级)...........................................18一、数与代数...............................................18二、图形与几何.............................................21三、统计与概率.............................................26四、综合与实践.............................................27第四部分实施建议.................................................28一、教学建议...................................................28二、评价建议...................................................33三、教材编写建议...............................................38附录1课程目标的术语解释..........................................43附录2内容标准及教学建议中的案例...................错误!未定义书签。前言《全日制义务教育数学课程标准(修改稿)》(以下简称《标准》)是根据《中华人民共和国义务教育法》、《基础教育课程改革纲要(试行)》制定的。《标准》以推进实施素质教育,培养学生的创新精神和实践能力,促进学生全面发展为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施提出建议。《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是每一个学生在该阶段应当达到的基本要求。《标准》是教材编写、教学、评估和考试命题的依据。在实施过程中,应当遵照《标准》的要求,充分考虑全体学生的发展,关注个体差异,因材施教。为更好地理解和把握有关的目标和内容,《标准》编入了一些案例,以供参考。第一部分基本理念与设计思路数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着现代计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的不可替代的作用。义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。课程设计要适应学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识与基本技能,发展学生抽象思维和推理能力,培养学生应用意识和创新意识,并使学生在情感、态度与价值观等方面都得到发展。课程设计要符合数学本身的特点,体现数学的精神实质;要符合学生的认知规律和心理特征,有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。一、基本理念1.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。2.课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。二、设计思路(一)关于学段为了体现义务教育数学课程的整体性,《标准》统筹考虑了九年的课程内容。同时,根据学生发展的生理和心理特征,将九年的学习时间划分为三个学段:第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。(二)关于目标《标准》提出义务教育阶段数学课程的总体目标和学段目标,并从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。数学学习活动的目标包括结果目标和过程目标。《标准》使用“了解、理解、掌握、运用”等术语表述学习活动结果目标的不同水平,使用“经历、体验、探索”等术语表述学习活动过程目标的不同程度(术语解释见附录1)。(三)关于课程内容在各学段中,《标准》安排了四个方面的课程内容:“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”。◆数与代数“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计、数量关系等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力还有助于学生理解运算的算理,能够寻求合理简洁的运算途径解决问题。建立和求解模型的过程包括:从现实生活或者具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习兴趣和应用意识。◆图形与几何“图形与几何”的主要内容有:空间和平面的基本图形,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言描述画出图形等。几何直观主要是指利用图形描述和分析数学问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则(包括逻辑和运算)证明结论。在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性。推理能力的发展应贯穿在整个数学学习过程中。◆统计与概率“统计与概率”主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。在“统计与概率”的教学中,应帮助学生逐渐