二次根式教案精选4篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!二次根式教案精选4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“二次根式教案精选4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!《二次根式》教学教案【第一篇】一、说教材本节课选自人教版九年级数学上册第二十一章二次根式第一节的内容。“二次根式”是《课程标准》“数与代数”的重要内容。本章是在第13章实数(平方根;13.立方根;实数)的基础上,进一步研究二次根式的概念、性质、和运算。本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也为以后将要学习的“锐角三角函数”、“一元二次方程”和“二次函数”等内容打下重要基础。二、说学情学生已经学习了平方根(算术平方根)等有关知识,有了一定的知识基础和认识能力。本课时及后面的知识的学习,对学生思维的严谨性、分类讨论及类比的数学思想等都有了更高的要求,如果学生在此不能很好地理解和正确地认知,将对后续的学习产生很大的影响,所以要求学生积极探究与思考,及时加以训练巩固,克服学习困难,真正“学会”。三、说教学目标根据大纲的要求和教材结构内容分析,结合九年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:1、知识与技能:掌握二次根式的概念,二次根式的取值范围和被开方数的取值范围2、过程与方法:根据条件处理问题的能力及分类讨论问题的能力3、情感态度价值观:严谨的科学精神四、说教学重点和难点教学重点:二次根式中被开方数的取值范围教学难点:二次根式的取值范围五、说教法教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根参考资料,少熬夜!式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。六、说学法新课程标准指出:学生是学习的主体。要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简的学习。通过对本节课的学习,使学生们的发散性思维得以启发,学生们的观察、分析、发现问题的能力得以锻炼,学生辩证唯物主义观点得以培养。次根式教案【第二篇】教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两参考资料,少熬夜!个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x-2且x0.解因为n2-90,9-n20,且n-30,所以n2=9且n3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a0和1-a>0.解因为1-a>0,3-a0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.注意:所以在化简过程中,例6分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a2B.a2C.a2D.a<2A.x+2B.-x-2C.-x+2D.x-2A.2xB.2aC.-2xD.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.参考资料,少熬夜!2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:次根式教案【第三篇】一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x、y、z是一种字母,它的'意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算(1)(+6)(3-)(2)(+)(-)分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3(2)(+)(-)=()2-()2=10-7=3三、巩固练习课本P20练习1、2.四、应用拓展例3.已知=2-,其中a、b是实数,且a+b≠0,化简+,并求值.分析:由于(+)(-)=1,因此对代数式的化简,参考资料,少熬夜!可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?次根式教案【第四篇】教案教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。学法:1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。知识点上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。二、展示目标,自主学习:自学指导:认真阅读课本第3页——4页内容,完成下列任务:1、请比较与0的大小,你得到的结论是:________________________。2、完成3页“探究”中的填空,你得到的结论是____________________。3、看例2是怎样利用性质进行计算的。4、完成4页“探究”中的填空,你得到的结论是:____________________。5、看懂例3,有困难可与同伴交流或问老师。课时作业教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800cm2,另一张面积为450cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,参考资料,少熬夜!还需买多长的金彩带?(≈,结果保留整数)

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功