高一数学知识点总结大全(4篇)高一数学知识点总结大全是栏目网友花时间分享的“高一数学知识点总结大全(4篇)”,您知道如何最大化地利用范文吗?大家可以把范文背下来。整体构思和写作框架是我们借鉴的重要方面,希望本文能给您提供借鉴!高一数学知识点总结大全篇【第一篇】函数的概念函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.函数的三要素:定义域、值域、对应法则函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x)关于X轴对称得函数y=-f(x)4)函数y=f(x)关于Y轴对称得函数y=f(-x)5)函数y=f(x)关于原点对称得函数y=-f(-x)6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=|f(x)|7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)高一数学知识点总结大全篇【第二篇】一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。(1)差值比较法的理论依据是不等式的基本性质:a-b0ab;a-b0ab。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。(2)商值比较法的理论依据是:若a,bR+,a/b1ab;a/b1ab。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是由因导果,从已知看需知,逐步推出结论。其逻辑关系为:AB1B2B3BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是执果索因,即从未知看需知,逐步靠拢已知。用分析法证明AB的逻辑关系为:BB1B1B3BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有,这只需证明B2为真,从而又有,这只需证明A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件。4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式AB,先假设AB,由题设及其它性质,推出矛盾,从而肯定AB。凡涉及到的证明不等式为否定命题、惟一性命题或含有至多、至少、不存在、不可能等词语时,可以考虑用反证法。5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示。此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cos,y=sin;②若x2+y21,可设x=rcos,y=rsin(0r1);③对于含有的不等式,由于|x|1,可设x=cos;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=。(2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如abc等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。6.放缩法放缩法是要证明不等式A二、难点突破1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定不等号的方向。2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜于表述,因为它条理清晰,形式简洁,适合人们的思维习惯。但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把只需证明等字眼不写,就成了错误。而用综合法书写的形式,它掩盖了分析、探索的过程。因而证明不等式时,分析法、综合法常常是不能分离的。如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程,以适应人们习惯的思维规律。还有的不等式证明难度较大,需一边分析,一边综合,实现两头往中间靠以达到证题的目的。这充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系。分析的终点是综合的起点,综合的终点又成为进一步分析的起点。3.分析法证明过程中的每一步不一定步步可逆,也没有必要要求步步可逆,因为这时仅需寻找充分条件,而不是充要条件。如果非要步步可逆,则限制了分析法解决问题的范围,使得分析法只能使用于证明等价命题了。用分析法证明问题时,一定要恰当地用好要证、只需证、即证、也即证等词语。4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾。5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视,否则可能会出现错误的结果。这是换元法的重点,也是难点,且要注意整体思想的应用。6.运用放缩法证明不等式时要把握好放缩的尺度,即要恰当、适度,否则将达不到预期的目的,或得出错误的结论。另外,是分组分别放缩还是单个对应放缩,是部分放缩还是整体放缩,都要根据不等式的结构特点掌握清楚。高一数学知识点总结大全篇【第三篇】空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。两异面直线所成的角:范围为(0,90)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点相交直线;(2)没有公共点平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内有无数个公共点②直线和平面相交有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0角由此得直线和平面所成角的取值范围为[0,90]最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。高一数学知识点总结大全篇【第四篇】第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山;(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y};(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋};(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5};(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:。非负整数集(即自然数集)记作:N;正整数集:N*或N+;整数集:Z;有理数集:Q;实数集:R;1)列举法:{a,b,c……};2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-32},{x|x-32};3)语言描述法:例:{不是直角三角形的三角形};4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合;(2)无限集含有无限个元素的集合;(3)空集不含任何元素的集合例:{x|x2=-5}。二、集合间的基本关系1.“包含”关系—子集注意:有两种可能。(1)A是B的一部分;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA;2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实。例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC;④如果AíB同时BíA那么A=B;3.不含任何元素的集合叫做空集,记为Φ;规定:空集是任何集合的子集,空集是任何非空集合的真子集。4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集;定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB};由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB});第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈*。当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radica