月学习计划【范例5篇】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

月学习计划【范例5篇】相信在当今社会很多人在工作中都会遇到文档的编写,那么在处理前,就需要去使用范文范文。借鉴范文构思可以让自己更善于运用修辞手法,还在思考怎么找到最经典的范文吗?根据您的要求,三一刀客的编辑为您整理了以下相关信息:月学习计划。月学习计划【第一篇】一.预习。不等于浏览。要深入了解知识内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于听课抓住重点,还可以培养自学能力,有时间还可以超前学习。二.听讲。核心在课堂。1.以听为主,兼顾记录。2.注重过程,轻结论。3.有重点。4.提高听课效率。三.复习。像演电影一样把课堂复习,整理笔记,四.多做练习。1.晚上吃饭后,坐到书桌时,看数学最适合,2.做一道数学题,每一步都要多问个别为什么,不能只满足于老师课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推,一步一步想,每个过程都必不可少,3.不要粗心大意,4.做完每一道题,要想想为什么会想到这样做,大脑建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5.解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,五.总结。1.要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2.建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3.周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。六.考前复习。1.前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离高考只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2.要重视基础,另外,听老师的话,勤学苦练不可少,成功没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。月学习计划【第二篇】1第一阶段复习计划:复习高数书上册第一章,需要达到以下目标:1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。2第二阶段复习计划:复习高数书上册第二章1-3节,需达到以下目标:1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记基本初等函数的导数公式;会用递推法计算高阶导数。3第三阶段复习计划:复习高数书上册第二章4-5节,第三章1-5节。需达到以下目标:1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.3.掌握用洛必达法则求未定式极限的方法.4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当时,图形是凹的;当时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。4第四阶段复习计划复习高数书上册第四章第1-3节。需达到以下目标:1.理解原函数的概念,理解不定积分的概念.2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。5第五阶段复习计划复习高数书上册第五章第1-3节。达到以下目标:1.理解定积分的几何意义。2.掌握定积分的性质及定积分中值定理。3.掌握定积分换元积分法与定积分广义换元法.本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。6第六阶段复习计划复习高数书上册第五章第4节,第六章第2节。达到以下目标:1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.2.掌握定积分换元法与定积分广义换元法.会求分段函数的定积分。3.掌握用定积分计算一些几何量(如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。月学习计划【第三篇】寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。1第一阶段复习计划:复习高数书上册第一章,需要达到以下目标:1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。2第二阶段复习计划:复习高数书上册第二章1-3节,需达到以下目标:1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记基本初等函数的导数公式;会用递推法计算高阶导数。3第三阶段复习计划:复习高数书上册第二章4-5节,第三章1-5节。需达到以下目标:1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.3.掌握用洛必达法则求未定式极限的方法.4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当时,图形是凹的;当时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。4第四阶段复习计划复习高数书上册第四章第1-3节。需达到以下目标:1.理解原函数的概念,理解不定积分的概念.2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。5第五阶段复习计划复习高数书上册第五章第1-3节。达到以下目标:1.理解定积分的几何意义。2.掌握定积分的性质及定积分中值定理。3.掌握定积分换元积分法与定积分广义换元法.本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。6第六阶段复习计划复习高数书上册第五章第4节,第六章第2节。达到以下目标:1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.2.掌握定积分换元法与定积分广义换元法.会求分段函数的定积分。3.掌握用定积分计算一些几何量(如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。月学习计划【第四篇】根据“国培”计划以及贵州省教育厅、贵州师范大学班培训实施方案,结合跟岗学校(遵义市第十一中学)工作安排,特制定本跟岗学习计划。一、跟岗学习指导思想珍惜这次来之不易的“国培”跟岗学习机会,服从学校工作安排和虚心接受指导教师提出的宝贵意见,认真学习文化知识和教学经验,保质保量、按时完成各种学习资料。为我校语文教学送去一颗品质优良的种子,为校园添新绿。二、跟岗学校目标1、加强思想、政治业务学习,爱岗敬业,寓教于乐。2、开阔知识视野,提升文化知识水平、教育水平和教学技

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功