《平方根》八年级数学教案精选4篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!《平方根》八年级数学教案精选4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“《平方根》八年级数学教案精选4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!导入新课:【第一篇】1、提出问题:(书P68页的问题)你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)这个问题相当于在等式扩=25中求出正数x的值。一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0.也就是,在等式=a(x0)中,规定x=。2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。3、想一想:下列式子表示什么意思?你能求出它们的值吗?建议:求值时,要按照算术平方根的。意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的算术平方根。4、例1求下列各数的算术平方根:(1)100;(2)1;(3);(4)《平方根》教案【第二篇】一、内容和内容解析1、内容算术平方根的概念,被开方数越大,对应的算术平方根也越大、2、内容解析算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要、作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备、算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定、由算术平方根的概念引出其符号表示、读法及什么是被开方数、根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根、根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法、基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法、参考资料,少熬夜!二、目标和目标解析1、教学目标(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根、(2)会求一些数的算术平方根、2、目标解析(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数、(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大、三、教学问题诊断分析在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识、但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯、还有就是负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,一般不会碰到(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学都涉及两个数的运算不一样,学生可能难以理解、基于以上分析,本节课的教学难点是:深化对算术平方根的理解、四、教学过程设计1、创设情境,引入新课教师展示教科书中本章的章前图,说明这是神舟七号宇宙飞船升空的照片,并提出下面的问题、问题1请同学们阅读本章的引言,你从引言中发现了哪些与数有关的概念?本章将要学习的主要内容以及大致的研究思路是什么?师生活动学生阅读,回答;教师补充说明数的范围不断扩大体现了人类在数的认识上的不断深入,让学生感受数的扩充的必要性、设计意图:通过“神舟七号载人飞船发射成功”引入本章学习,激发兴趣,增强学生的学习热情、2、师生互动,学习新知问题2学校要举行美术作品比赛,小鸥想裁出一块面积为25d的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师生活动:学生可能很快答出边长为5d、追问请说一说,你是怎样算出来的?师生活动:学生理清解决问题的思路,回答,教师可结合参考资料,少熬夜!图片强调思路、设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材、问题3完成下表:正方形的面积师生活动:学生不难回答“0的算术平方根是0”,可以表示为“”;教师指明:算术平方根的概念包含“正数算术平方根”的定义和“0的算术平方根”的规定两部分、追问(1)根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数、追问(2)为什么负数没有算术平方根呢?师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数、设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯、追问(3)请判断正误:(1)—5是—25的`算术平方根;(2)6是的算术平方根;(3)0的算术平方根是0;(4)0、01是0、1的算术平方根;(5)一个正方形的边长就是这个正方形的面积的算术平方根、师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导、设计意图:检验对算术平方根的理解、3、例题示范,学会应用例1求下列各数的算术平方根:(1)100;(2);(3)0、0001、师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流、追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论、如有困难,教师再举一些具体例子加以引导,说明、设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大、为下节课学习估计平方根的大小做准备、例2求下列各式的值、参考资料,少熬夜!(1)_____;(2)_____;(3)_____师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评、设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根、4、即时训练,巩固新知(1)教科书第41页的练习、(2)求的算术平方根、师生活动:学生独立完成,教师巡视,对个别差生进行辅导、对“求的算术平方根”,要让学生明白此题包含两层运算,即先求=?,然后再求“?”的算术平方根,实际上就是上述例1、例2类型的综合题、设计意图:通过练习使学生在了解算术平方根及有关概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解、5、课堂小结师生共同回顾本节课所学内容,并请学生回答以下问题:(1)什么是算术平方根?(2)如何求一个正数的算术平方根?(3)什么数才有算术平方根?设计意图:让学生对本节课知识进行梳理,进一步落实相关概念、6、布置作业:教科书习题6、1第1、2题、五、目标检测设计1、若是49的算术平方根,则_____=(_____)A、7B、-7C、49D、-49设计意图:本题考查学生对算术平方根概念的理解、2、说出下列各式的意义,并求它们的值、(1)_____;(2)_____;(3)_____;(4)_____设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言、3、_____的算术平方根是_____设计意图:本题考查学生对算术平方根概念的全面理解、《平方根》教案【第三篇】学习目标:1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。学习重点:了解平方根的概念,求某些非负数的平方根学习难点:参考资料,少熬夜!了解被开方数的非负性;学习过程:一、学习准备1、我们已经学习过哪些运算?它们中互为逆运算的是?答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。32=()()2=9(—3)2=()()2=()2=()()2=0()2=()02=()()2=—43、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。即如果X2=a,那么叫做的平方根。请按照第3页的举例你再举两个例子说明:叫做开平方,平方与互为逆运算4、观察上面两组算式,归纳一个数的平方根的性质是:一个正数有两个平方根,它们互为相反数;零有一个平方根,它是零本身;负数没有平方根。交流:(1)的平方根是什么?(2)的平方根是什么?(3)0的平方根是什么?(4)—9的平方根是什么?5、平方根的表示方法一个正数a有两个平方根,它们互为相反数。正数a的`正的平方根,记作正数a的负的平方根,记作这两个平方根合在一起记作如果X2=a,那么X=,其中符号读作根号,a叫做被开方数这里的a表示什么样的数?a是非负数二、合作探究1、判断下面的说法是否正确:1)—5是25的平方根;()2)25的平方根是—5;()3)0的平方根是0()4)1的平方根是1()5)(—3)2的平方根是—3()6)—32的平方根是—3()2、阅读课本第4页例题1,按例题格式判断下列各数有参考资料,少熬夜!没有平方根,若有,求其平方根。若没有,说明为什么。(1)(2)(3)—100(4)(—4)2(5)(6)(7)10(8)5三、学习体会:本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?四、自我测试1、检验下面各题中前面的数是不是后面的数的平方根。(1)12,144()(2),()(3)102,104()(4)14,256()2、选择题(1)的平方根是()A、B、C、D、(2)因为()2=所以()A、是的平方根。B、是的3倍。C、是的平方根。D、不是的平方根。3、判断下列说法是否正确:(1)—9的平方根是—3;()(2)49的平方根是7;()(3)(—2)2的平方根是()(4)—1是1的平方根;()(5)若X2=16则X=4()(6)7的平方根是49。()4、求下列各数的平方根1)812)0。253)4)(—6)25、求下列各式中的x:(1)x=16(2)x=(3)x=15(4)4x=81思维拓展:1、一个数的平方等于它本身,这个数是一个数的平方根等于它本身,这个数是2、若3a+1没有平方根,那么a一定。3、若4a+1的平方根是5,则a=。4、一个数x的平方根等于m+1和m—3,则m=。x=。5、若|a—9|+(b—4)=0,则ab的平方根是。6、熟背1至20的平方的结果。7、分别计算32,34,46,58,512,10的平方根,你能发现开平方后幂的指数有什么变化吗?《平方根》的教案【第四篇】教学目标:了解数的算术平方根及平方根的概念,并会用符号表示;理解平方与开方之间是互为逆运算的关系,会用计算器求一些正数的算术平方根。教学重点:了解数的算术平方根及平方根的概念,会求某些非负数的平方根,会用根号表示一个数的平方根。参考资料,少熬夜!教学难点:对大小的估算及如何理解是非负数以及被开方数是非负数;正确区分算术平方根与平方根。第1课时一、创设情景,导入新课请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)二、合作交流,解读探究讨论:1、什么样的运算是平方运算?2、你还记得1~20之间整数的平方吗?自主探索:让学生独立看书,自学教材总结:一般地,如果一个正数的平方为,即,那么正数叫做的算术平方根,记为,读作根号,其中叫做被开方数。另外:0的算术平方根是0探究:怎样用两个面

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功