第1页共5页课时跟踪检测(七)诱导公式(二)A级——学考水平达标练1.已知sinα=513,则cos3π2+α等于()A.513B.1213C.-513D.-1213解析:选Acos3π2+α=sinα=513.2.若sin(3π+α)=-12,则cos7π2-α等于()A.-12B.12C.32D.-32解析:选A由已知,得sinα=12,则cos7π2-α=-sinα=-12.3.已知sinα-π4=13,则cosπ4+α等于()A.-13B.13C.223D.-223解析:选Acosπ4+α=cosα-π4+π2=-sinα-π4=-13.故选A.4.化简:sinθ-5πcos-π2-θcos8π-θsinθ-3π2sin-θ-4π=()A.-sinθB.sinθC.cosθD.-cosθ解析:选A原式=sinθ-πcosπ2+θcos-θcosθsin-θ=-sinθ-sinθcosθcosθ-sinθ=-sinθ.5.计算sin21°+sin22°+sin23°+…+sin289°=()A.89B.90第2页共5页C.892D.45解析:选C∵sin21°+sin289°=sin21°+cos21°=1,sin22°+sin288°=sin22°+cos22°=1,……,∴sin21°+sin22°+sin23°+…+sin289°=sin21°+sin22°+sin23°+…+sin244°+sin245°+cos244°+cos243°+…+cos23°+cos22°+cos21°=44+12=892.6.若sinπ3-α=13,则cos5π6-α=________.解析:cos5π6-α=cosπ2+π3-α=-sinπ3-α=-13.答案:-137.若sin(180°+α)+cos(90°+α)=-a,则cos(270°-α)+2sin(360°-α)的值是________.解析:由sin(180°+α)+cos(90°+α)=-sinα-sinα=-a,得sinα=a2,所以cos(270°-α)+2sin(360°-α)=-sinα-2sinα=-3sinα=-32a.答案:-32a8.化简cosα-π2sin5π2+α·sin(α-π)·cos(2π-α)的结果为________.解析:原式=cosπ2-αsin2π+π2+α·(-sinα)·cos(-α)=sinαsinπ2+α·(-sinα)·cosα=sinαcosα·(-sinα)·cosα=-sin2α.答案:-sin2α9.已知cosα=13,且-π2<α<0,求cos-α-πsin2π+αtan2π-αsin3π2-αcosπ2+α的值.解:原式=-cosα·sinα·-tanα-cosα·-sinα=tanα,因为cosα=13,-π2<α<0,所以sinα=-1-cos2α=-223,所以tanα=sinαcosα=-22.第3页共5页10.已知cosπ2+α=13,求值:sinπ2+αcosπ2-αcosπ+α+sinπ-αcos3π2+αsinπ+α.解:原式=cosαsinα-cosα+sinαsinα-sinα=-sinα-sinα=-2sinα.又cosπ2+α=13,所以-sinα=13.所以原式=-2sinα=23.B级——高考水平高分练1.已知锐角α终边上一点P的坐标是(2sin2,-2cos2),则α等于()A.2B.-2C.2-π2D.π2-2解析:选C由条件可知点P到原点的距离为2,所以P(2cosα,2sinα),所以2cosα=2sin2,2sinα=-2cos2,根据诱导公式及α为锐角可知,cosα=cos2-π2,sinα=sin2-π2,所以α=2-π2.2.若A,B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在()A.第一象限B.第二象限C.第三象限D.第四象限解析:选B因为A,B是锐角三角形的两个内角,所以A+B90°,所以B90°-A,所以cosBsinA,sinBcosA,故cosB-sinA0,sinB-cosA0,选B.3.若f(cosx)=cos2x,则f(sin15°)等于________.解析:f(sin15°)=f[cos(90°-15°)]=f(cos75°)=cos150°=-32.答案:-324.在△ABC中,sinA+B-C2=sinA-B+C2,试判断△ABC的形状.解:∵A+B+C=π,∴A+B-C=π-2C,A-B+C=π-2B.第4页共5页∵sinA+B-C2=sinA-B+C2,∴sinπ-2C2=sinπ-2B2,∴sinπ2-C=sinπ2-B,即cosC=cosB.又∵B,C为△ABC的内角,∴C=B,∴△ABC为等腰三角形.5.已知cosπ6-α=33,求证:sin4π3+α+cos22π3-α=2-33.证明:因为cosπ6-α=33,所以sin4π3+α+cos22π3-α=sin3π2-π6-α+cos2π2+π6-α=-cosπ6-α+-sinπ6-α2=-33+1-332=2-33.6.已知f(cosx)=cos17x.(1)求证:f(sinx)=sin17x;(2)对于怎样的整数n,能由f(sinx)=sinnx推出f(cosx)=cosnx?解:(1)证明:f(sinx)=fcosπ2-x=cos17π2-x=cos8π+π2-17x=cosπ2-17x=sin17x.(2)f(cosx)=fsinπ2-x=sinnπ2-x=sinnπ2-nx=-sinnx,n=4k,cosnx,n=4k+1,sinnx,n=4k+2,-cosnx,n=4k+3,k∈Z.第5页共5页故所求的整数为n=4k+1,k∈Z.