2018-2019学年沈阳市沈河区九年级上学期期末数学试卷一、选择题(每小题2分,共20分)1.(2分)若,则的值为()A.B.C.D.【分析】根据比例的性质解答即可.【解答】解:因为,所以b=,把b=代入则=,故选:B.【点评】此题考查比例的性质,关键是根据比例的性质代入解答.2.(2分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.【分析】俯视图是从上面看,注意所有的看到的棱都应表现在主视图中.【解答】解:如图所示:它的俯视图是:.故选:C.【点评】此题主要考查了三视图的知识,关键是掌握三视图的几种看法.3.(2分)若反比例函数y=﹣的图象上有三个点(﹣1,y1),(﹣,y2),(,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2≤y1<y3【分析】根据反比例函数的图象和性质比较即可.【解答】解:∵y=﹣中k=﹣3<0,∴图象在第二、四象限,在每个象限内,y随x的增大而增大,∵反比例函数y=﹣的图象上有三个点(﹣1,y1),(﹣,y2),(,y3),∴点(﹣1,y1)和(﹣,y2)在第二象限,点(,y3)在第四象限,﹣1<﹣,∴0<y1<y2,y3<0,即y3<y1<y2,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的图象和性质等知识点,能熟记反比例函数的性质是解此题的关键.4.(2分)如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A.3B.6C.D.10【分析】根据平行于三角形一边的直线截另两边或另两边的延长线所得三角形与原三角形相似,即可求得△CBE∽△AED,根据相似三角形的对应边成比例,即可求得DE的长.【解答】解:∵AD∥BC,∴△CBE∽△AED,∴BE:AE=CE:ED=3:5,∵CD=16.CE+ED=CD,∴DE=,故选:D.【点评】此题考查了相似三角形的判定与性质.注意数形结合思想的应用.5.(2分)下表记录了一名设计运动员在同一条件下的射击成绩,这名射击运动员射击一次,射击中9环的概率约是()射击次数1001502005008001000“射中9环以上”的次数8896136345546701“射中9环以上”的频率0.880.640.680.690.680.70A.0.6B.0.8C.0.7D.0.9【分析】根据大量的试验结果稳定在0.7左右即可得出结论.【解答】解:从频率的波动情况可以发现频率稳定在0.7附近,所以这名运动员射击一次时“射中9环以上”的概率是0.7,故选:C.【点评】本题考查的是利用频率估计概率,熟知大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.6.(2分)若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A.B.C.D.【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的面积比是,∴△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选:D.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.(2分)下列命题正确的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【分析】根据平行四边形的判定方法可得A说法正确;根据菱形的判定方法对角线互相垂直且平分的四边形是菱形可得B说法错误;根据对角线相等且平分的四边形是矩形可得C说法错误;根据正方形的判定方法:对角线互相垂直且相等的平行四边形是正方形可得D说法错误.【解答】解:A、对角线互相平分的四边形是平行四边形,说法正确;B、对角线互相垂直的四边形是菱形,说法错误,应为对角线互相垂直且平分的四边形是菱形;C、对角线相等的四边形是矩形,说法错误,应为对角线相等且平分的四边形是矩形;D、对角线互相垂直且相等的四边形是正方形,说法错误,应为对角线互相垂直且相等的平行四边形是正方形;故选:A.【点评】此题主要考查了命题与定理,关键是熟练掌握平行四边形和特殊的平行四边形的判定方法.8.(2分)已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示x……﹣10123……y……﹣23676……下列说法错误的是()A.图象开口向下B.抛物线的对称轴是直线x=2C.b2﹣4ac>0D.当1<x<3时,y<6【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:由表格可得,该函数的对称轴是直线x==2,故选项B正确,该函数的顶点坐标是(2,7),有最大值,开口向下,故选项A正确,该函数与x轴有两个交点,故b2﹣4ac>0,故选项C正确,当1<x<3时,6<y≤7,故选项D错误,故选:D.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.9.(2分)如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为()A.9.6cmB.10cmC.20cmD.12cm【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【解答】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=AC=6cm,OB=BD=8cm,∴AB==10(cm),故选:B.【点评】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.10.(2分)如图,在正方形网格中,△ABC的位置如图,其中点A、B、C分别在格点上,则sinA的值是()A.B.C.D.【分析】根据勾股定理,可得AC的长,根据正弦等于对边比斜边,可得答案.【解答】解:过点C作CD⊥AB于点D,∵BC=2,∴S△ABC=BC×4=4,∵AB==4,∴CD==,∵AC==2,∴sinA===,故选:A.【点评】本题考查了勾股定理的运用以及锐角三角函数的定义,构造∠A所在的直角三角形是解题的关键.二、填空题(每小题3分,共18分)11.(3分)计算:cos230°+|1﹣|﹣2sin45°+(π﹣3.14)0=.【分析】直接利用绝对值的性质以及零指数幂的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=()2+﹣1﹣2×+1=+﹣1﹣+1=.故答案为:.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.(3分)在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为.【分析】画树状图展示所有6种等可能的结果数,再找出甲乙两名同学恰好抽中相邻赛道的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲乙两名同学恰好抽中相邻赛道的结果数为4,所以甲乙两名同学恰好抽中相邻赛道的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.14.(3分)如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是(﹣1,2)或(1,﹣2).【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,把A点的横纵坐标分别乘以或﹣即可得到点A′的坐标.【解答】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)在矩形ABCD中,AB=9,tan∠ADB=,点E在射线DA上,连接BE,将线段BE绕点E旋转90°后,点B恰好落在射线DB上(此时点B的对应点为点F),则线段DF的长为或105.【分析】解直角三角形得到AD=12,过F作FH⊥AD于H,设DH=4x,FH=3x,根据勾股定理得到DF=5x,根据余角的性质得到∠ABE=∠HEF,根据全等三角形的性质得到AE=HF=3x,EH=AB=9,列方程即可得到结论.【解答】解:如图1,∵四边形ABCD是矩形,∴∠A=90°,∵AB=9,tan∠ADB=,∴AD=12,过F作FH⊥AD于H,∵tan∠ADB=,∴设DH=4x,FH=3x,∴DF=5x,∵∠BEF=90°,∴∠ABE+∠AEB=∠AEB+∠HEF=90°,∴∠ABE=∠HEF,在△ABE与△HEF中,,∴△ABE≌△HEF(AAS),∴AE=HF=3x,EH=AB=9,∴AE+DH=AD﹣EH=3x+4x=12﹣9=3,∴x=,∴DF=5x=;如图2,∵四边形ABCD是矩形,∴∠BAD=90°,∵AB=9,tan∠ADB=,∴AD=12,过F作FH⊥AD于H,∵tan∠ADB=,∴设DH=4x,FH=3x,∴DF=5x,∵∠BEF=90°,∴∠ABE+∠AEB=∠AEB+∠HEF=90°,∴∠ABE=∠HEF,在△ABE与△HEF中,,∴△ABE≌△HEF,∴AE=HF=3x,EH=AB=9,∴DH﹣AE=AD+EH=4x﹣3x=12+9=21,∴x=21,∴DF=5x=105,综上所述,线段DF的长为或105.故答案为:或105.【点评】本题考查了旋转的性质,矩形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题17.(6分)解方程:(x﹣3)2=7x﹣21.【分析】利用因式分解法求解可得.【解答】解:∵(x﹣3)2﹣7(x﹣3)=0,∴(x﹣3)(x﹣10)=0,则x﹣3=0或x﹣10=0,解得:x1=3,x2=10.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直