20202021学年沈阳市第一三四中学九年级上学期期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

OBxyCA图122020-2021学年沈阳市第一三四中学九年级上学期期末数学试卷1、如图12,A、B是函数的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则()A.2SB.4SC.24SD.4S2、如图,已知双曲线)0k(xky>经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=____________.3、反比例函数y1=kx与一次函数y2=-x+b的图象交于点A(2,3)和点B(m,2).由图象可知,对于同一个x,若y1>y2,则x的取值范围是.4、如图11,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数1yx(0x)的图象上,则点E的坐标是(,).5、二次函数cbxxy2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()A.x=4B.x=3C.x=-5D.x=-16、直角坐标平面上将二次函数y=-2(x-1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,-2)C.(0,-1)D.(-2,1)7.二次函数cbxaxy2的图象如图所示,则abc,acb42,ba2,cba这四个式子中,值为正数的有()A.4个B.3个C.2个D.1个8、已知二次函数)0(2acbxaxy的图象如图所示,有下列5个结论:①0abc;②cab;③024cba;④bc32;⑤)(bammba,(1m的实数)其中正确的结论有()A.2个B.3个C.4个D.5个9、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是().(A)②④(B)①④(C)②③(D)①③10、如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴正半轴上,B点在x轴的负半轴上,则m的取值范围应是A.m1B.m-1C.m-1D.m111、有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000kg蟹的销售总额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?12、一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率13、(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同)。小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积。(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢。你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平。14、如图32所示,在直角坐标系中,点A是反比例函数1kyx的图象上一点,ABx轴的正半轴于B点,C是OB的中点;一次函数2yaxb的图象经过A、C两点,并将y轴于点02D,,若4AODS△.(1)求反比例函数和一次函数的解析式;Oxy-11第4题图4321yxCBADO图32AOBCyx=1x2)观察图象,指出在y轴的右侧,当12yy时x的取值范围.15、如图14,已知(4)An,,(24)B,是一次函数ykxb的图象和反比例函数myx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程0xmbkx的解(请直接写出答案);(4)求不等式0xmbkx的解集(请直接写出答案).16、已知,如图抛物线23(0)yaxaxca与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B.(1)、抛物线的解析式;(2)、点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值:(3)、点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.17、如图,抛物线y=ax2+bx+c的交x轴于点A和点B(-2,0),与y轴的负半轴交于点C,且线段OC的长度是线段OA的2倍,抛物线的对称轴是直线x=1.(1)求抛物线的解析式;(2)若过点(0,-5)且平行于x轴的直线与该抛物线交于M、N两点,以线段MN为一边抛物线上与M、N不重合的任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,请你求出S关于点P的纵坐标y的函数解析式;(3)当0<x≤103时,(2)中的平行四边形的面积是否存在最大值?若存在,请求出来;若不存在,请说明理由.18如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=34tx-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)填空:点C的坐标是,b=,c=;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.19、新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线252051230yxx的一部分,点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?ABxyOQHPC20如图,已知抛物线21yx与x轴交于A、B两点,与y轴交于点C(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于P,求四边形ACBP的面积.(3)在x轴上方的抛物线上是否存在一点M,过M作MGx轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.21、如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为。②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动。试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由。(画图不写作法)(3)若AC=42,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值。22如图13,在梯形ABCD中,24ADBCADBC∥,,,点M是AD的中点,MBC△是等边三角形.(1)、求证:梯形ABCD是等腰梯形;(2)、动点P、Q分别在线段BC和MC上运动,且60MPQ∠保持不变.设PCxMQy,,求y与x的函数关系式;(3)、在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断PQC△的形状,并说明理由.23、已知∠AOB=900,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转到CD与OA垂直时(如图1),易证:OD+OE=2OC.当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明.图1图2图3CPByAoxADCBPMQ60°图1324、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.探究:线段BM、MN、NC之间的关系,并加以证明.说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.①ANNC(如图②);②//DMAC(如图③).附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.25、(06荆门25)某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)度写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功