2021-2022学年沈阳市和平区九年级上学期期末数学试卷一、选择题(下列各题备选答案中,只有一个答案是正确的。每小题2分,共20分)1.如图是一根空心方管,它的主视图是()A.B.C.D.2.顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A.菱形B.矩形C.正方形D.三角形3.一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有()个.A.4B.3C.2D.14.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣2x=0B.x2+4x=﹣4C.2x2﹣4x+3=0D.3x2=5x﹣25.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中①号“E”字的高度BC长为b,当测试距离为3m时,②号“E”字的高度DF长为()A.5bB.3bC.bD.b6.如图,点D,E是△ABC中AB边上的点,△CDE是等边三角形,且∠ACB=120°,则下列结论中正确的是()A.CD2=AD•BEB.BC2=BE•BDC.AC2=AD•AED.AC•BC=AE•BD7.将抛物线y=x2+1向左平移2个单位长度,再向上平移3个单位长度,则平移后抛物线的顶点坐标为()A.(﹣2,3)B.(﹣2,﹣4)C.(﹣2,4)D.(2,﹣3)8.如图,在△ABC中,BC=12cm,高AD=6cm,正方形EFGH的四个顶点均在△ABC的边上,则正方形EFGH的边长为()cm.A.2B.2.5C.3D.49.如图,点P,点Q都在反比例函数y=的图象上,过点P分别作x轴、y轴的垂线,两条垂线与两坐标轴围成的矩形面积为S1,过点Q作x轴的垂线,交x轴于点A,△OAQ的面积为S2,若S1+S2=3,则k的值为()A.2B.1C.﹣1D.﹣210.某商场在销售一种日用品时发现,如果以单价20元销售,则每周可售出100件,若销售单价每提高0.5元,则每周销售量会相应减少2件.如果该商场这种日用品每周的销售额达到2024元.若设这种日用品的销售单价为x元,则根据题意所列方程正确的是()A.(20+x)(100﹣2x)=2024B.(20+x)(100﹣)=2024C.x[100﹣2(x﹣20)]=2024D.x(100﹣×2)=2024二、填空题(每小题3分,共18分)11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气体体积为2m3时,气压是kPa.12.如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF.若AF=5,BF=3,则AC的长为.13.在平面直角坐标系中,△ABC与△DEF位似,位似中心是原点O.已知A与D是对应顶点.且A,D的坐标分别是A(9,18),D(3,6),若△DEF的周长为3,则△ABC的周长为.14.甲公司前年缴税100万元,今年缴税121万元,则该公司缴税的年平均增长率.15.如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是.16.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象如图所示,对称轴为直线x=﹣1.有以下结论:①abc>0;②a(k2+2)2+b(k2+2)<a(k2+1)2+b(k2+1)(k为实数);③m(am+b)≤﹣a(m为实数);④c<﹣3a;⑤ax2+bx+c+1=0有两个不相等的实数根.其中正确的结论有(只填写序号).三、解答题(第17题6分,第18、19题各8分,共22分)17.解方程:2y2+6y=y+3.18.计算:|cos60°﹣|+(sin30°)﹣1﹣.19.在一个不透明的盒子里有红球、黄球、绿球各一个,它们除了颜色外其余都相同,小颖从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图法,求小颖两次摸出的球颜色相同的概率.四、(每小题8分,共16分)20.如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.21.如图,小丁家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间地面的D处,中午太阳光恰好能从窗户的最低点E射进房间地面的F处,AB⊥BD于点B,CE⊥BD于点O,小丁测得OE=1m,CE=1.5m,OF=1.2m,OD=12m,求围墙AB的高为多少米.五、(本题10分)22.如图,在平面直角坐标系中,一次函数y=﹣x+1与反比例函数y=的图象在第四象限相交于点A(2,﹣1),一次函数的图象与x轴相交于点B.(1)求反比例函数的表达式及点B的坐标;(2)当一次函数值小于反比例函数值时,请直接写出x的取值范围是;(3)点C是第二象限内直线AB上的一个动点,过点C作CD∥x轴,交反比例函数y=的图象于点D,若以O,B,C,D为顶点的四边形为平行四边形,请直接写出点C的坐标为.六、(本题10分)23.如图,小明父亲想用长为100m的栅栏,再借助房屋的外墙围成一个矩形的羊圈ABCD.已知房屋外墙长40m,设矩形ABCD的边AB=xm,面积为Sm2.(1)请直接写出S与x之间的函数表达式为,并直接写出x的取值范围是;(2)求当x为多少m时,面积S为1050m2;(3)当AB,BC分别为多少米时,羊圈的面积最大?最大面积是多少?七、(本题12分)24.如图1,在菱形ABCD中,对角线AC与BD相交于点O,且AC=16,BD=12.(1)求菱形ABCD的面积及周长;(2)点M是射线DA上一个动点,作射线BM,交射线CA于点E.将射线BM绕点B逆时针旋转后交射线CA于点N,旋转角为∠MBN,且∠MBN=,连接MN.①如图2,当点N与点O重合时,求△AMN的周长;②当AE=BE时,请直接写出AM的长为;③BN=时,请直接写出AM的长为.八、(本题12分)25.如图1,在平面直角坐标系中,抛物线y=ax2+x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD以每秒个单位长度的速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为(不必写出t的取值范围).