2013年辽宁省鞍山市中考数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共19页)2013年辽宁省鞍山市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)3﹣1等于()A.3B.﹣C.﹣3D.2.(2分)一组数据2,4,5,5,6的众数是()A.2B.4C.5D.63.(2分)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°4.(2分)要使式子有意义,则x的取值范围是()A.x>0B.x≥﹣2C.x≥2D.x≤25.(2分)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°6.(2分)已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根7.(2分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.29.29.29.2方差(环2)0.0350.0150.0250.027第2页(共19页)则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁8.(2分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(共8小题,每小题2分,满分16分)9.(2分)分解因式:m2﹣10m=.10.(2分)如图,∠A+∠B+∠C+∠D=度.11.(2分)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.12.(2分)若方程组,则3(x+y)﹣(3x﹣5y)的值是.13.(2分)△ABC中,∠C=90°,AB=8,cosA=,则BC的长.14.(2分)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.15.(2分)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.第3页(共19页)16.(2分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.三、计算题(共2小题,每小题6分,满分12分)17.(6分)先化简,再求值:,其中x=.18.(6分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?四、应用题(共2小题,每小题6分,满分12分)19.(6分)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.20.(6分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)第4页(共19页)五、应用题(共2小题,每小题6分,满分12分)21.(6分)如图,已知线段a及∠O,只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)22.(6分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.六、应用题(共2小题,每小题6分,满分12分)23.(6分)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?为什么?(2)若AC=2,AO=,求OD的长度.24.(6分)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B第5页(共19页)两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.七、应用题(满分10分)25.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?八、应用题(满分10分)26.(10分)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.第6页(共19页)第7页(共19页)2013年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数),进行运算即可.【解答】解:3﹣1=.故选:D.【点评】此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.2.【分析】根据众数的定义解答即可.【解答】解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选:C.【点评】此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.3.【分析】先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.【解答】解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.故选:C.【点评】本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.4.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.【分析】直接根据圆周角定理进行解答即可.第8页(共19页)【解答】解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选:A.【点评】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.【分析】根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.【点评】此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.7.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【分析】由开口方向、与y轴交于负半轴以及对称轴的位置,即可确定a,b,c的正负;由对称轴x=﹣=1,可得b+2a=0;由抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,可得抛物线与x轴的另一个交点为(4,0);当x=﹣1时,y=a﹣b+c<0;a﹣b+c<0,b+2a=0,即可得3a+c<0.【解答】解:∵开口向上,∴a>0,∵与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b<0,第9页(共19页)∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x轴的另一个交点为(4,0);故③正确;∵当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④错误;∵a﹣b+c<0,b+2a=0,∴3a+c<0;故⑤正确.故选:B.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题2分,满分16分)9.【分析】直接提取公因式m即可.【解答】解:m2﹣10m=m(m﹣10).故答案为:m(m﹣10).【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.10.【分析】根据四边形内角和等于360°即可求解.【解答】解:由四边形内角和等于360°,可得∠A+∠B+∠C+∠D=360度.故答案为:360.【点评】考查了四边形内角和等于360°的基础知识.11.【分析】先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵在一次函数y=kx+2中,y随x的增大而增大,第10页(共19页)∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.12.【分析】把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.【解答】解:∵,∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.故答案为:24.【点评】本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.13.【分析】首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.【解答】解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.第11页(共19页)15.【分析】考查方程思想及观察图形提取信息的能力.【解答】解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为55cm,故可列x+y=55,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为30×=20cm.故填20.【点评】本题是一道能力题,注意图形与方程等量关系的结合.16.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功