2014年广西玉林市、防城港市中考数学试卷一、单项选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•玉林)下面的数中,与﹣2的和为0的是()A.2B.﹣2C.D.2.(3分)(2014•玉林)将6.18×10﹣3化为小数的是()A.0.000618B.0.00618C.0.0618D.0.6183.(3分)(2014•玉林)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a54.(3分)(2014•玉林)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣yC.x2+x+1D.x2﹣2x+15.(3分)(2014•玉林)如图的几何体的三视图是()A.B.C.D.6.(3分)(2014•玉林)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形7.(3分)(2014•玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3B.6C.9D.128.(3分)(2014•玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.9.(3分)(2014•玉林)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的是结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在10.(3分)(2014•玉林)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm11.(3分)(2014•玉林)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个B.6个C.8个D.10个12.(3分)(2014•玉林)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•玉林)3的倒数是.14.(3分)(2014•玉林)在平面直角坐标系中,点(﹣4,4)在第象限.15.(3分)(2014•玉林)下表是我市某一天在不同时段测得的气温情况0:004:008:0012:0016:0020:0025℃27℃29℃32℃34℃30℃则这一天气温的极差是℃.16.(3分)(2014•玉林)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.17.(3分)(2014•玉林)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是.18.(3分)(2014•玉林)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).三、解答题(共8小题,满分66分。解答应写出文字说明过程或演算步骤)19.(6分)(2014•玉林)计算:(﹣2)2﹣•+(sin60°﹣π)0.20.(6分)(2014•玉林)先化简,再求值:﹣,其中x=﹣1.21.(6分)(2014•玉林)如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是.22.(8分)(2014•玉林)第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?23.(9分)(2014•玉林)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.24.(9分)(2014•玉林)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)25.(10分)(2014•玉林)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.26.(12分)(2014•玉林)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.2014年广西玉林市、防城港市中考数学试卷一、单项选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•玉林)下面的数中,与﹣2的和为0的是()A.2B.﹣2C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.解答:解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.点评:此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.2.(3分)(2014•玉林)将6.18×10﹣3化为小数的是()A.0.000618B.0.00618C.0.0618D.0.618考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.解答:解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.故选B.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3.(3分)(2014•玉林)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5考点:幂的乘方与积的乘方.分析:利用幂的乘方与积的乘方的性质求解即可求得答案.解答:解:(2a2)3=8a6.故选C.点评:此题考查了幂的乘方与积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键.4.(3分)(2014•玉林)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣yC.x2+x+1D.x2﹣2x+1考点:实数范围内分解因式.分析:利用因式分解的方法,分别判断得出即可.解答:解;A、x2+y2,无法因式分解,故此选项错误;B、x2﹣y,无法因式分解,故此选项错误;C、x2+x+1,无法因式分解,故此选项错误;D、x2﹣2x+1=(x﹣1)2,故此选项正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用公式是解题关键.5.(3分)(2014•玉林)如图的几何体的三视图是()A.B.C.D.考点:简单组合体的三视图.分析:分别找出图形从正面、左面、和上面看所得到的图形即可.解答:解:从几何体的正面看可得有2列小正方形,左面有2个小正方形,右面下边有1个小正方形;从几何体的正面看可得有2列小正方形,左面有2个小正方形,右面下边有1个小正方形;从几何体的上面看可得有2列小正方形,左面有2个小正方形,右上角有1个小正方形;故选:C.点评:本题考查了三视图的知识,注意所有的看到的棱都应表现在三视图中.6.(3分)(2014•玉林)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为真命题;C、对角线垂直的平行四边形是菱形,所以C选项为假命题;D、对角线垂直的平行四边形是菱形,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.(3分)(2014•玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3B.6C.9D.12考点:位似变换.分析:利用位似图形的面积比等于位似比的平方,进而得出答案.解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.8.(3分)(2014•玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故答案为:C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2014•玉林)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的是结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.菁优网版权所有分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2