2014年四川省泸州市中考数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共23页)2014年四川省泸州市中考数学试卷一、选择题(本大题共12小题,每题3分,共36分.只有一项是符合题目要求的.)1.(3分)5的倒数为()A.B.5C.D.﹣52.(3分)计算x2•x3的结果为()A.2x2B.x5C.2x3D.x63.(3分)如图的几何图形的俯视图为()A.B.C.D.4.(3分)某校八年级(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A.38B.39C.40D.425.(3分)如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为()A.30°B.60°C.120°D.150°6.(3分)已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2B.2C.4D.﹣47.(3分)一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cmB.12cmC.15cmD.18cm8.(3分)已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是()第2页(共23页)A.B.C.D.9.(3分)“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时B.2.2小时C.2.25小时D.2.4小时10.(3分)如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是()A.外切B.相交C.内含D.内切11.(3分)如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()第3页(共23页)A.B.C.D.12.(3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.二、填空题(本大题共4小题,每小题3分,共12分.请将最后答案直接填在题中横线上.)13.(3分)分解因式:3a2+6a+3=.14.(3分)使函数y=+有意义的自变量x的取值范围是.15.(3分)一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为.16.(3分)如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是(写出所有正确命题的序号).第4页(共23页)三、(本大题共3小题,每题6分,共18分)17.(6分)计算:﹣4sin60°+(π+2)0+()﹣2.18.(6分)计算(﹣)÷.19.(6分)如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.四、(本大题共1小题,每题7分,共14分)20.(7分)某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:第5页(共23页)(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.五、(本大题共3小题,每题8分,共16分)21.(7分)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.22.(8分)海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)23.(8分)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.第6页(共23页)(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.六、(本大题共2小题,每小题12分,共24分)24.(12分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.25.(12分)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.第7页(共23页)2014年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分.只有一项是符合题目要求的.)1.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:5的倒数是,故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:原式=x2+3=x5.故选:B.【点评】本题考查了同底数幂的乘法,底数不变指数相加是解题关键.3.【分析】根据从上面看到的图形是俯视图,可得俯视图.【解答】解:从上面看:里边是圆,外边是矩形,故选:C.【点评】本题考查了简单组合体的三视图,注意所有的看到的棱都应表现在俯视图中.4.【分析】根据中位数的定义求解,把数据按大小排列,第3个数为中位数.【解答】解:题目中数据共有6个,按从小到大排列后取第3、4个数的平均数作为中位数,故这组数据的中位数是=39.故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数,比较简单.5.【分析】根据等边三角形的性质,可得∠C的度数,根据三角形中位线的性质,可得DE与BC的关系,根据平行线的性质,可得答案.【解答】解:由等边△ABC得∠C=60°,第8页(共23页)由三角形中位线的性质得DE∥BC,∴∠DEC=180°﹣∠C=180°﹣60°=120°,故选:C.【点评】本题考查了三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.6.【分析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.【分析】圆锥的母线长=圆锥的底面周长×.【解答】解:圆锥的母线长=2×π×6×=12cm,故选:B.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.【分析】根据抛物线与x轴有两个不同的交点,可得判别式大于零,可得m的取值范围,根据m的取值范围,可得答案.【解答】解:抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,∴△=(﹣2)2﹣4(m+1)>0解得m<0,∴函数y=的图象位于二、四象限,故选:D.【点评】本题考查了反比例函数图象,先求出m的值,再判断函数图象的位置.9.【分析】根据待定系数法,可得一次函数解析式,根据函数值,可得相应自变量的值.【解答】解:设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,第9页(共23页)解得∴AB段函数的解析式是y=80x﹣30,离目的地还有20千米时,即y=170﹣20=150km,当y=150时,80x﹣30=150解得:x=2.25h,故选:C.【点评】本题考查了一次函数的应用,利用了待定系数法求解析式,利用函数值求自变量的值.10.【分析】根据两圆的半径和移动的速度确定两圆的圆心距的最小值,从而确定两圆可能出现的位置关系,找到答案.【解答】解:∵O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm,此时两圆的半径的差为:3﹣2=1cm,∴此时两圆内切,故选:D.【点评】本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.11.【分析】作FG⊥AB于点G,由AE∥FG,得出=,求出Rt△BGF≌Rt△BCF,再由AB=BC求解.【解答】解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在Rt△BGF和Rt△BCF中,第10页(共23页)∴Rt△BGF≌Rt△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.【点评】本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=BC再利用比例式求解.12.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,第11页(共23页)∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.二、填空题(本大题共4小题,每小题3分,共12分.请将最后答案直接填在题中横线上.)13.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3a2+6a+3,=3(a2+2a+1),=3(a+1)2.故答案为:3(a+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功