2014年浙江省宁波市中考数学试卷(含解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)(2014•宁波)下列各数中,既不是正数也不是负数的是()A.0B.﹣1C.D.22.(4分)(2014•宁波)宁波轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿用科学记数法表示为()【版权所有:21教育】A.253.7×108B.25.37×109C.2.537×1010D.2.537×10113.(4分)(2014•宁波)用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.4.(4分)(2014•宁波)杨梅开始采摘啦!每框杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4框杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克5.(4分)(2014•宁波)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π6.(4分)(2014•宁波)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10B.8C.6D.57.(4分)(2014•宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.8.(4分)(2014•宁波)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()21教育名师原创作品A.2:3B.2:5C.4:9D.:9.(4分)(2014•宁波)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()21*cnjy*comA.b=﹣1B.b=2C.b=﹣2D.b=0*10.(4分)(2014•宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱11.(4分)(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5B.C.D.212.(4分)(2014•宁波)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)二、填空题(每小题4分,共24分)13.(4分)(2014•宁波)﹣4的绝对值是.14.(4分)(2014•宁波)方程=的根x=.15.(4分)(2014•宁波)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是支.16.(4分)(2014•宁波)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).17.(4分)(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出个这样的停车位.(≈1.4)18.(4分)(2014•宁波)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为cm2.三、解答题(本大题有8小题,共78分)19.(6分)(2014•宁波)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.20.(8分)(2014•宁波)作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).21.(8分)(2014•宁波)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.(10分)(2014•宁波)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.23.(10分)(2014•宁波)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.24.(10分)(2014•宁波)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.(12分)(2014•宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.26.(14分)(2014•宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.2014年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)(2014•宁波)下列各数中,既不是正数也不是负数的是()A.0B.﹣1C.D.2考点:实数;正数和负数.分析:根据实数的分类,可得答案.解答:解:0既不是正数也不是负数,故选:A.点评:本题考查了实数,大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.2.(4分)(2014•宁波)宁波轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿用科学记数法表示为()A.253.7×108B.25.37×109C.2.537×1010D.2.537×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:253.7亿=25370000000=2.537×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2014•宁波)用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.考点:翻折变换(折叠问题).分析:根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.解答:解:A.当长方形如A所示对折时,其重叠部分两角的和一个顶点处小于90°,另一顶点处大于90°,故本选项错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故本选项错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故本选项错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,正确.故选:D.点评:本题考查的是角平分线的定义及图形折叠的性质,熟知图形折叠的性质是解答此题的关键.4.(4分)(2014•宁波)杨梅开始采摘啦!每框杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4框杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克考点:正数和负数分析:根据有理数的加法,可得答案.解答:解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.点评:本题考查了正数和负数,有理数的加法运算是解题关键.5.(4分)(2014•宁波)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π考点:圆锥的计算专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.解答:解:此圆锥的侧面积=•4•2π•2=8π.故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.(4分)(2014•宁波)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10B.8C.6D.5考点:菱形的性质;勾股定理.分析:根据菱形的性质及勾股定理即可求得菱形的边长.解答:解:∵四边形ABCD是菱形,AC=8,BD=6,∴OB=OD=3,OA=OC=4,AC⊥BD,在Rt△AOB中,由勾股定理得:AB===5,即菱形ABCD的边长AB=BC=CD=AD=5,故选D.点评:本题考查了菱形的性质和勾股定理,关键是求出OA、OB的长,注意:菱形的对角线互相平分且垂直.7.(4分)(2014•宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.考点:概率公式专题:网格型.分析:找到可以组成直角三角形的点,根据概率公式解答即可.解答:解:如图,C1,C2,C3,均可与点A和B组成直角三角形.P=,故选C.点评:本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(4分)(2014•宁波)如图,梯形ABCD中,AD∥BC,∠B=∠AC

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功