2015年广西百色市中考数学试卷一.选择题(共12小题,每小题3分,共36分,每小题给出的四个选项中只有一个是符合要求的)1.下列图形中具有稳定性的是()A.正三角形B.正方形C.正五边形D.正六边形2.必然事件的概率是()A.﹣1B.0C.0.5D.13.化简:=()A.±2B.﹣2C.2D.24.北京在今年6月初申办2022年冬季奥运会的陈述中,若申办成功,将带动月3.2亿人参与这项活动.将3.2亿用科学记数法表示为()A.32×107B.3.2×108C.3.2×109D.0.32×10105.如图是由8个小正方体组合而成的几何体,它的俯视图是()A.B.C.D.6.已知函数y=,当x=2时,函数值y为()A.5B.6C.7D.87.一个角的余角是这个角的补角的,则这个角的度数是()A.30°B.45°C.60°D.70°8.下列命题的逆命题一定成立的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=3,则x2﹣3x=0.A.①②③B.①④C.②④D.②9.一组数:8,9,7,10,6,9,9,6,则这组数的中位数与众数的和是()A.16.5B.17C.17.5D.1810.有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是()海里.A.10B.10﹣10C.10D.10﹣1011.化简﹣的结果为()A.B.C.D.[来源:学|科12.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4B.4或5C.5或6D.6:学科网ZXXK]二.填空题(每小题3分,共18分)13.计算:|﹣2015|=.14.如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=9,AC=8,BD=14,则△AOD的周长为.15.实数﹣2的整数部分是.16.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B.若∠ABP=33°,则∠P=°.17.甲、乙两人各射击5次,成绩统计表如下:环数(甲)678910环数(乙)678910次数11111次数02201那么射击成绩比较稳定的是(填“甲”或“乙”).18.观察下列砌钢管的横截面图:则第n个图的钢管数是(用含n的式子表示)三.解答题(共8小题,共66分)19.计算:|﹣3|+2cos30°+()0﹣()﹣1.20.解不等式组,并求其整数解.21.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于M(1,3),N两点,点N的横坐标为﹣3.(1)根据图象信息可得关于x的方程=kx+b的解为;(2)求一次函数的解析式.22.如图,AB∥DE,AB=DE,BF=EC.(1)求证:AC∥DF;(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗?若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.23.某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:(1)成绩x在什么范围的人数最多?是多少人?(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.24.某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分;3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.(1)甲队必答题答对答错各多少题?(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队啦啦队队员小黄说:“我们甲队输了!”小汪说:“小黄的话不一定对!”请你举一例说明“小黄的话”有何不对.25.已知⊙O为△ABC的外接圆,圆心O在AB上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.①求证:OD⊥BC;②求EF的长.26.抛物线y=x2+bx+c经过A(0,2),B(3,2)两点,若两动点D、E同时从原点O分别沿着x轴、y轴正方向运动,点E的速度是每秒1个单位长度,点D的速度是每秒2个单位长度.(1)求抛物线与x轴的交点坐标;(2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由;(3)问几秒钟时,B、D、E在同一条直线上?2015年广西百色市中考数学试卷参考答案与试题解析一.选择题(共12小题,每小题3分,共36分,每小题给出的四个选项中只有一个是符合要求的)1.下列图形中具有稳定性的是()A.正三角形B.正方形C.正五边形D.正六边形考点:三角形的稳定性.分析:直接根据三角形具有稳定性进行解答即可.解答:解:∵三角形具有稳定性,∴A正确,B、C、D错误.故选A.点评:本题考查的是三角形的稳定性,熟知三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性是解答此题的关键.2.必然事件的概率是()A.﹣1B.0C.0.5D.1考点:概率的意义.分析:根据必然事件就是一定发生的事件,即发生的概率是1的事件即可解答.解答:解:∵必然事件就是一定发生的事件∴必然事件发生的概率是1.故选D.点评:本题主要考查随机事件的意义;事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中:①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.3.化简:=()A.±2B.﹣2C.2D.2考点:立方根.分析:根据立方根计算即可.解答:解:=2.故选C.点评:此题考查立方根,关键是根据立方根化简.4.北京在今年6月初申办2022年冬季奥运会的陈述中,若申办成功,将带动月3.2亿人参与这项活动.将3.2亿用科学记数法表示为()A.32×107B.3.2×108C.3.2×109D.0.32×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3.2亿用科学记数法表示为:3.2×108.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是由8个小正方体组合而成的几何体,它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上边看得到的图形,可得答案.解答:解:从上边看第一层是三个小正方形,第二层有两个小正方形,第三层一个小正方形,故选D.点评:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.已知函数y=,当x=2时,函数值y为()A.5B.6C.7D.8考点:函数值.分析:利用已知函数关系式结合x的取值范围,进而将x=2代入求出即可.解答:解:∵x≥0时,y=2x+1,∴当x=2时,y=2×2+1=5.故选:A.点评:此题主要考查了函数值,注意x的取值不同对应函数解析式不同,进而得出是解题关键.7.一个角的余角是这个角的补角的,则这个角的度数是()A.30°B.45°C.60°D.70°考点:余角和补角.分析:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,再根据题意列出方程,求出x的值即可.解答:解:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=45°.故选B.点评:本题考查的是余角及补角的定义,能根据题意列出关于x的方程是解答此题的关键.8.下列命题的逆命题一定成立的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=3,则x2﹣3x=0.A.①②③B.①④C.②④D.②考点:命题与定理.专题:计算题.分析:求出各命题的逆命题,判断真假即可.解答:解:①对顶角相等,逆命题为:相等的角为对顶角,错误;②同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,正确;③若a=b,则|a|=|b|,逆命题为:若|a|=|b|,则a=b,错误;④若x=3,则x2﹣3x=0,逆命题为:若x2﹣3x=0,则x=3,错误.故选D.点评:此题考查了命题与定理,熟练掌握逆命题的求法是解本题的关键.9.一组数:8,9,7,10,6,9,9,6,则这组数的中位数与众数的和是()A.16.5B.17C.17.5D.18考点:众数;中位数.分析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.解答:解:在这一组数据中9是出现次数最多的,故众数是9;将这组数据已从小到大的顺序排列,处于中间位置的两个数是8、9,那么由中位数的定义可知,这组数据的中位数是8.5;+9.5=17.5,故选C.点评:本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是()海里.A.10B.10﹣10C.10D.10﹣10考点:解直角三角形的应用-方向角问题.分析:由题意得:∠CAP=30°,∠CBP=45°,BC=10海里,分别在Rt△BCP中和在Rt△APC中求得BC和AC后相减即可求得A、B之间的距离.解答:解:由题意得:∠CAP=30°,∠CBP=45°,BC=10海里,在Rt△BCP中,∵∠CBP=45°,∴CP=BC=10海里,在Rt△APC中,AC===10海里,∴AB=AC﹣BC=(10﹣10)海里,故选D.点评:本题考查了解直角三角形的应用,解题的关键是能够从实际问题中整理出直角三角形,并选择合适的边角关系求解.11.化简﹣的结果为()A.B.C.D.考点:分式的加减法.分析:先通分,再把分子相加减即可.解答:解:原式=﹣====.故选C.点评:本题考查的是分式的加减法,熟知异分母分式的加减法法则是解答此题的关键.12.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4B.4或5C.5或6D.6考点:一元一次不等式组的整数解;三角形的面积;三角形三边关系.专题:计算题.分析:先设长度为4、12的高分别是a、b边上的,边c上的高为h,△ABC的面积是S,根据三角形面积公式,可求a=,b=,c=,结合三角形三边的不等关系,可得关于h的不等式,解即可.解答:解:设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=,b=,c=,又∵a﹣b<c<a+b,∴﹣<c<+,即<<S,解得3<h<6,∴h=4或h=5,故选B.点评:主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键;利用三角形三边关系求得第3条高的取值范围是解决本题的难点.二.填空题(每小题3分,共18分)13.计算:|﹣2015|=2015.考点:绝对值.分析:根据负数的绝对值等于它的相反数,即可解答.解答:解:|﹣2015|=2015.故答案为:2015.[来源:学,科,网]点评:本题考查了绝对值,解决本题的关键是熟记负数的绝对值等于它的相反数.14.