第1页(共21页)2015年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分。在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)实数﹣2015的绝对值是()A.2015B.﹣2015C.±2015D.2.(3分)有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.a﹣2=﹣a2B.a+a2=a3C.+=D.(a2)3=a64.(3分)一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1B.﹣2<x≤1C.﹣2≤x<1D.﹣2≤x≤15.(3分)现有甲、乙两个合唱队队员的平均身高为170cm,方差分别是S甲2、S乙2,且S甲2>S乙2,则两个队的队员的身高较整齐的是()A.甲队B.乙队C.两队一样整齐D.不能确定6.(3分)下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.四条边相等的四边形是菱形D.正方形是轴对称图形,但不是中心对称图形第2页(共21页)7.(3分)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.=B.=C.=D.=8.(3分)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④二、填空题(本大题8道小题,每小题4分,满分32分。)9.(4分)单项式﹣x2y3的次数是.10.(4分)分解因式:x2﹣9=.11.(4分)据统计,2015年岳阳市参加中考的学生约为49000人,用科学记数法可将49000表示为.12.(4分)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m=.13.(4分)在一次文艺演出中,各评委对某节目给出的分数是:9.20,9.25,9.10,9.20,9.15,9.20,9.15,这组数据的众数是.14.(4分)一个n边形的内角和是1800°,则n=.15.(4分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3=.第3页(共21页)16.(4分)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.三、解答题(本大题8道小题,满分64分。)17.(6分)计算:(﹣1)4﹣2tan60°++.18.(6分)先化简,再求值:(1﹣)÷,其中x=.19.(8分)如图,直线y=x+b与双曲线y=都经过点A(2,3),直线y=x+b与x轴、y轴分别交于B、C两点.(1)求直线和双曲线的函数关系式;(2)求△AOB的面积.20.(8分)如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅第4页(共21页)脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)21.(8分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)频率篮球300.25羽毛球m0.20乒乓球36n跳绳180.15其它120.10请根据以上图表信息解答下列问题:(1)频数分布表中的m=,n=;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是.22.(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为第5页(共21页)F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.23.(10分)已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.24.(10分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.第6页(共21页)第7页(共21页)2015年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分。在每道小题给出的四个选项中,选出符合要求的一项)1.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣2015|=2015,故选:A.【点评】本题考查了绝对值,解决本题的关键是熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能合并,错误;C、原式不能合并,错误;D、原式=a6,正确,故选:D.【点评】此题考查了幂的乘方与积的乘方,合并同类项,负整数指数幂,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.4.【分析】根据不等式解集的表示方法即可判断.【解答】解:该不等式组的解集是:﹣2≤x<1.故选:C.【点评】本题考查了不等式组的解集的表示,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”第8页(共21页)实心圆点向左画折线.5.【分析】根据方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.【解答】解:根据方差的意义,方差越小数据越稳定;因为S甲2>S乙2,故有甲的方差大于乙的方差,故乙队队员的身高较为整齐.故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【分析】根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据菱形的判定方法对C进行判断;根据轴对称和中心对称的定义对D进行判断.【解答】解:A、一组对边平行,且相等的四边形是平行四边形,所以A选项错误;B、对角线互相垂直,且相等的平行四边形是矩形,所以B选项错误;C、四条边相等的四边形是菱形,所以C选项正确;D、正方形是轴对称图形,也是中心对称图形,所以D选项错误.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得:=,故选:B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.8.【分析】根据圆周角定理得∠ADB=90°,则BD⊥AC,于是根据等腰三角形的性质可判断AD=DC,则可对①进行判断;利用等腰三角形的性质和平行线的性质可证明∠1=∠2=∠3=∠4,则根据相似三角形的判定方法得到△CBA∽△CDE,于是可对②进行判断;由于不能确定∠1等于45°,则不能确定与相等,则可对③进行判断;利用DA=DC=DE可判断∠AEC=90°,即CE⊥AE,根据平行线的性质得到AB⊥AE,然后根据第9页(共21页)切线的判定定理得AE为⊙O的切线,于是可对④进行判断.【解答】解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O的切线,所以④正确.故选:D.第10页(共21页)【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质、平行线的性质和相似三角形的判定.二、填空题(本大题8道小题,每小题4分,满分32分。)9.【分析】根据单项式的次数的定义:单项式中,所有字母的指数和叫做这个单项式的次数解答.【解答】解:单项式﹣x2y3的次数是2+3=5.故答案为:5.【点评】本题考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.10.【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法可将49000表示为4.9×104,故答案为:4.9×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值12.【分析】根据题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,第11页(共21页)∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判别式,解答本题的关键是掌握当△=0时,方程有两个相等的两个实数根.13.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求出.【解答】解:因为9.20出现的次数最多,所以众数是9.20.故答案为:9.20.【点评】主要考查了众数的概念.注意众数