动态问题一.选择题1.(2015•山东德州,第12题3分)如图,平面直角坐标系中,A点坐标为(2,2),点P(m,n)在直线y=﹣x+2上运动,设△APO的面积为S,则下面能够反映S与m的函数关系的图象是()A.B.C.考点:动点问题的函数图象..分析:根据题意得出临界点P点横坐标为1时,△APO的面积为0,进而结合底边长不变得出即可.解答:解:∵点P(m,n)在直线y=﹣x+2上运动,∴当m=1时,n=1,即P点在直线AO上,此时S=0,当0<m≤1时,S△APO不断减小,当m>1时,S△APO不断增大,且底边AO不变,故S与m是一次函数关系.故选:B.点评:此题主要考查了动点问题的函数图象,根据题意得出临界点是解题关键.2.(2015•山东莱芜,第11题3分)如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象..分析:根据题意,分三种情况:(1)当0≤t≤2a时;(2)当2a<t≤3a时;(3)当3a<t≤5a时;然后根据直角三角形中三边的关系,判断出y关于x的函数解析式,进而判断出y与x的函数关系的图象是哪个即可.解答:解:(1)当0≤t≤2a时,∵PD2=AD2+AP2,AP=x,∴y=x2+a2.(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵PD2=CD2+CP2,∴y=(3a﹣x)2+(2a)2=x2﹣6ax+13a2.(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x∵PD2=y,∴y=(5a﹣x)2=(x﹣5a)2,综上,可得y=∴能大致反映y与x的函数关系的图象是选项D中的图象.故选:D.点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.3.(2015•本溪,第10题3分)如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是()A.B.C.D.考点:动点问题的函数图象..分析:首先连接CP,根据点P是斜边AB的中点,可得S△ACP=S△BCP=S△ABC;然后分别求出出发时;点N到达BC的中点、点M也到达AC的中点时;结束时,△PMN的面积S的大小,即可推得△MPQ的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,据此判断出△PMN的面积S与运动时间t的函数关系图象大致是哪个即可.解答:解:如图1,连接CP,,∵点P是斜边AB的中点,∴S△ACP=S△BCP=S△ABC,出发时,S△PMN=S△BCP=S△ABC∵两点同时出发,同时到达终点,∴点N到达BC的中点时,点M也到达AC的中点,∴S△PMN=S△ABC;结束时,S△PMN=S△ACP=S△ABC,△MPQ的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,∴△PMN的面积S与运动时间t的函数关系图象大致是:.故选:A.点评:此题主要考查了动点问题的函数图象,要熟练掌握,解答此题的关键是要明确:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.4.(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.5.(3分)(2015•桂林)(第12题)如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()A.8B.10C.3πD.5π考点:轨迹.专题:计算题.分析:连结DE,作FH⊥BC于H,如图,根据等边三角形的性质得∠B=60°,过D点作DE′⊥AB,则BE′=BD=2,则点E′与点E重合,所以∠BDE=30°,DE=BE=2,接着证明△DPE≌△FDH得到FH=DE=2,于是可判断点F运动的路径为一条线段,此线段到BC的距离为2,当点P在E点时,作等边三角形DEF1,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=8,所以F1F2=DQ=8,于是得到当点P从点E运动到点A时,点F运动的路径长为8解:连结DE,作FH⊥BC于H,如图,∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,则BE′=BD=2,∴点E′与点E重合,∴∠BDE=30°,DE=BE=2∵△DPF为等边三角形,[∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°,[∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,[在△DPE和△FDH中,,∴△DPE≌△FDH,[来%源^#:&中教网@][中国教育*&出版@网#~]∴FH=DE=2,[来~源:中国教育出版&%网^#]∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为2,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,[来源:%&z~z^s@tep.com]当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=10﹣2=8,∴F1F2=DQ=8,∴当点P从点E运动到点A时,点F运动的路径长为8.点评:本题考查了轨迹:点运动的路径叫点运动的轨迹,利用代数或几何方法确定点运动的规律.也考查了等边三角形的性质和三角形全等的判定与性质.6.(2015•甘肃天水,第9题,4分)如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C点与A点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据弦CD为定长可以知道无论点C怎么运动弦CD的弦心距为定值,据此可以得到函数的图象.解答:解:作OH⊥CD于点H,∴H为CD的中点,∵CF⊥CD交AB于F,DE⊥CD交AB于E,∴OH为直角梯形的中位线,∵弦CD为定长,∴CF+DE=y为定值,故选B.点评:本题考查了动点问题的函数图象,解题的关键是化动为静.7.(2015•黄石第10题,3分)如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.考点:动点问题的函数图象..分析:设运动员C的速度为v,则运动了t的路程为vt,设∠BOC=α,当点C从运动到M时,当点C从M运动到A时,分别求出d与t之间的关系即可进行判断.解答:解:设运动员C的速度为v,则运动了t的路程为vt,设∠BOC=α,当点C从运动到M时,∵vt==,∴α=,在直角三角形中,∵d=50sinα=50sin=50sint,∴d与t之间的关系d=50sint,当点C从M运动到A时,d与t之间的关系d=50sin(180﹣t),故选C.点评:本题考查的是动点问题的函数图象,熟知圆的特点是解答此题的关键.8.(2015•烟台,第12题3分)如图,RTABC⊿,90oC,30oBAC,AB=8,以23为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合。现将正方形DEFG沿A→B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与⊿ABC的重合部分的面积S与运动时间之间的函数关系图像大致是()考点:函数图像运动型问题分析:【解析】(1)AD=t,DM=1233t,S=236t(0t23);(2)23≤t6,AD=t,DM=33t,AG=t-23,GN=33(t-23);S=S△AMD-S△ANG=236t-36(t-23)2=2t-23NMEDFPCBAG(2)6≤t≤8,AG=t-23,GN=BD=8-t,DM=3BD=3(8-t)GP=AP-AG=6+23-tPD=PB-BD=t-6S=S梯形NGPC+S梯形MDPC=12(33(t-23)+23)(6+23-t)+12(3(8-t)+23)(t-6)=一个二次函数NMEDFPCBAG解答:故选A点评:这是一道函数图像综合题。它结合了运动型问题,利用面积构建函数,在不同运动状态下形成不同形式的函数形式,体现了数学中的分类思想和数形结合思想,这道题综合性较强,具有较好的区分度。9.(2015•江苏盐城,第8题3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据点P在AD、DE、EF、FG、GB上时,△ABP的面积S与时间t的关系确定函数图象.解答:解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选:B.点评:本题考查的是动点问题的函数图象,正确分析点P在不同的线段上△ABP的面积S与时间t的关系是解题的关键.二.填空题1.(2015·湖北省潜江市、天门市、仙桃市、江汉油田第15题3分)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为(0.5,﹣).考点:菱形的性质;坐标与图形性质..专题:规律型.分析:先