第1页(共34页)2017年辽宁省朝阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•朝阳)计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣20172.(3分)(2017•朝阳)如图,AB∥CD,EF⊥CD,∠BAE=60°,则∠AEF的度数为()A.110°B.140°C.150°D.160°3.(3分)(2017•朝阳)下列四种垃圾分类回收标识中,是轴对称图形的是()A.B.C.D.4.(3分)(2017•朝阳)如果3x2myn+1与﹣12x2ym+3是同类项,则m,n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣35.(3分)(2017•朝阳)某企业为了解职工业余爱好,组织对本企业150名职工业余爱好进行调查,制成了如图所示的扇形统计图,则在被调查的职工中,爱好旅游和阅读的人数分别是()A.45,30B.60,40C.60,45D.40,456.(3分)(2017•朝阳)某校书法兴趣小组20名学生日练字页数如下表所示:日练字页数23456人数26543这些学生日练字页数的中位数、平均数分别是()A.3页,4页B.3页,5页C.4页,4页D.4页,5页7.(3分)(2017•朝阳)如图,在正方形ABCD中,O为对角线交点,将扇形AOD第2页(共34页)绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变B.由大变小C.由小变大D.先由小变大,后由大变小8.(3分)(2017•朝阳)某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得()A.(8﹣x)(10﹣x)=8×10﹣40B.(8﹣x)(10﹣x)=8×10+40C.(8+x)(10+x)=8×10﹣40D.(8+x)(10+x)=8×10+409.(3分)(2017•朝阳)若函数y=(m﹣1)x2﹣6x+32m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣310.(3分)(2017•朝阳)如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D重合).点P为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转90°后,角的两边交射线DA于H,G两点,有下列结论:①DH=DE;②DP=DG;③DG+DF=√2DP;④DP•DE=DH•DC,其中一定正确的是()A.①②B.②③C.①④D.③④二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•朝阳)数据19170000用科学记数法表示为.12.(3分)(2017•朝阳)“任意画一个四边形,其内角和是360°”是(填“随机”、“必然”或“不可能”中任一个)事件.第3页(共34页)13.(3分)(2017•朝阳)不等式组{3𝑥−1>52𝑥<6的解集为.14.(3分)(2017•朝阳)如图是某物体的三视图,则此物体的体积为(结果保留π).15.(3分)(2017•朝阳)如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为.16.(3分)(2017•朝阳)如图,在平面直角坐标系中,正比例函数y=kx的图象与反比例函数y=𝑚𝑥的图象都过点A(2,2),将直线OA向上平移4个单位长度后,与反比例函数图象交于点C,与x轴交于点B,连接AB,AC,则△ABC的面积为.三、解答题(本大题共9小题,共72分)17.(5分)(2017•朝阳)计算:√4+(12)﹣1﹣(π﹣√10)0﹣|﹣3|.第4页(共34页)18.(5分)(2017•朝阳)解分式方程:32𝑥+1﹣22𝑥−1=𝑥+14𝑥2−1.19.(7分)(2017•朝阳)为打造平安校园,增强学生安全防范意识,某校组织了全校1200名学生参加校园安全网络知识竞赛.赛后随机抽取了其中200名学生的成绩作为样本进行整理,并制作了如下不完整的频数分布表和频数分布直方图.成绩x/分频数频率50≤x<6010n60≤x<70200.1070≤x<80300.1580≤x<90m0.4090≤x<100600.30请根据图表提供的信息,解答下列各题:(1)表中m=,n=,请补全频数分布直方图.(2)若用扇形统计图来描述成绩分布情况,则分数段80≤x<90对应扇形的圆心角的度数是°.(3)若成绩在80分以上(包括80分)为合格,则参加这次竞赛的1200名学生中成绩合格的大约有多少名?第5页(共34页)20.(7分)(2017•朝阳)如图,AB是某景区内高10m的观景台,CD是与AB底部相平的一座雕像(含底座),在观景台顶A处测得雕像顶C点的仰角为30°,从观景台底部B处向雕像方向水平前进6m到达点E,在E处测得雕像顶C点的仰角为60°,已知雕像底座DF高8m,求雕像CF的高.(结果保留根号)21.(8分)(2017•朝阳)在四边形ABCD中,有下列条件:①AB=∥CD;②AD=∥BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是.(2)从中任选两个作为已知条件,请用画树状图或列表的方法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?第6页(共34页)22.(8分)(2017•朝阳)如图,以△ABC的边AC为直径的⊙O交AB边于点M,交BC边于点N,连接AN,过点C的切线交AB的延长线于点P,∠BCP=∠BAN.(1)求证:△ABC为等腰三角形.(2)求证:AM•CP=AN•CB.23.(10分)(2017•朝阳)今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=﹣120x+m(m为常数).(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围.(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价﹣成本)×月生产量﹣工人月最低工资].第7页(共34页)24.(10分)(2017•朝阳)已知,在△ABC中,点D在AB上,点E是BC延长线上一点,且AD=CE,连接DE交AC于点F.(1)猜想证明:如图1,在△ABC中,若AB=BC,学生们发现:DF=EF.下面是两位学生的证明思路:思路1:过点D作DG∥BC,交AC于点G,可证△DFG≌△EFC得出结论;思路2:过点E作EH∥AB,交AC的延长线于点H,可证△ADF≌△HEF得出结论;…请你参考上面的思路,证明DF=EF(只用一种方法证明即可).(2)类比探究:在(1)的条件下(如图1),过点D作DM⊥AC于点M,试探究线段AM,MF,FC之间满足的数量关系,并证明你的结论.(3)延伸拓展:如图2,在△ABC中,若AB=AC,∠ABC=2∠BAC,𝐴𝐵𝐵𝐶=m,请你用尺规作图在图2中作出AD的垂直平分线交AC于点N(不写作法,只保留作图痕迹),并用含m的代数式直接表示𝑁𝐹𝐴𝐶的值.第8页(共34页)25.(12分)(2017•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+bx(a,b为常数,a≠0)经过两点A(2,4),B(4,4),交x轴正半轴于点C.(1)求抛物线y=ax2+bx的解析式.(2)过点B作BD垂直于x轴,垂足为点D,连接AB,AD,将△ABD以AD为轴翻折,点B的对应点为E,直线DE交y轴于点P,请判断点E是否在抛物线上,并说明理由.(3)在(2)的条件下,点Q是线段OC(不包含端点)上一动点,过点Q垂直于x轴的直线分别交直线DP及抛物线于点M,N,连接PN,请探究:是否存在点Q,使△PMN是以PM为腰的等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.第9页(共34页)2017年辽宁省朝阳市中考数学试卷参考答案与试题解一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•朝阳)计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣2017【考点】1E:有理数的乘方.【分析】直接利用有理数的乘方性质得出答案.【解答】解:(﹣1)2017=﹣1.故选:B.【点评】此题主要考查了有理数的乘方,正确掌握运算法则是解题关键.2.(3分)(2017•朝阳)如图,AB∥CD,EF⊥CD,∠BAE=60°,则∠AEF的度数为()A.110°B.140°C.150°D.160°【考点】JA:平行线的性质;J3:垂线.【分析】如图,过点E作EG∥AB,根据平行线的性质得到∠AEG=∠BAE=60°.易得∠AEF的度数.【解答】解:如图,过点E作EG∥AB,∵AB∥CD,EF⊥CD,∴∠AEG=∠BAE=60°,EF⊥GE,∴∠GEF=90°,∴∠AEF=∠AEG+∠GEF=150°.故选:C.第10页(共34页)【点评】本题考查的是平行线的性质以及角平分线的性质,根据题意作出平行线是解答此题的关键.3.(3分)(2017•朝阳)下列四种垃圾分类回收标识中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•朝阳)如果3x2myn+1与﹣12x2ym+3是同类项,则m,n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣3【考点】34:同类项.【分析】依据同类项的定义列出关于m、n的方程组求解即可.【解答】解:∵3x2myn+1与﹣12x2ym+3是同类项,∴2m=2,n+1=m+3,解得m=1,n=3.故选:B.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.第11页(共34页)5.(3分)(2017•朝阳)某企业为了解职工业余爱好,组织对本企业150名职工业余爱好进行调查,制成了如图所示的扇形统计图,则在被调查的职工中,爱好旅游和阅读的人数分别是()A.45,30B.60,40C.60,45D.40,45【考点】VB:扇形统计图.【分析】分别利用总人数乘以爱好旅游的人数所占百分比和爱好阅读的人数所占百分比即可.【解答】解:爱好旅游人数:150×40%=60(人),爱好阅读的人数:150×(1﹣10%﹣40%﹣20%)=45(人),故选:C.【点评】此题主要考查了扇形统计图,关键是掌握扇形统计图直接反映部分占总体的百分比大小.6.(3分)(2017•朝阳)某校书法兴趣小组20名学生日练字页数如下表所示:日练字页数23456人数26543这些学生日练字页数的中位数、平均数分别是()A.3页,4页B.3页,5页C.4页,4页D.4页,5页【考点】W4:中位数;W2:加权平均数.【分析】根据表格中的数据可以求得这组数据的中位数和平均数,从而可以解答本题.第12页(共34页)【解答】解:由表格可得,人数一共有:2+6+5+4+3=20,∴这些学生日练字页数的中位数:4页,平均数是:2×2+3×6+4×5+5×4+6×32+6+5+4+3=4(页),故选C.【点评】本题考查中位数和加权平均数,解答本题的关键是明确它们各自的计算方法.7.(3分)(