第1页(共30页)2017年辽宁省大连市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)在实数﹣1,0,3,12中,最大的数是()A.﹣1B.0C.3D.122.(3分)一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球3.(3分)计算3𝑥(𝑥−1)2﹣3(𝑥−1)2的结果是()A.𝑥(𝑥−1)2B.1𝑥−1C.3𝑥−1D.3𝑥+14.(3分)计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a65.(3分)如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°6.(3分)同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.347.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)第2页(共30页)8.(3分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2aB.2√2aC.3aD.4√33𝑎二、填空题(每小题3分,共24分)9.(3分)计算:﹣12÷3=.10.(3分)下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是岁.11.(3分)五边形的内角和为.12.(3分)如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.13.(3分)关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.14.(3分)某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.15.(3分)如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为nmile.(结果取整数,参考数据:√3≈1.7,√2≈1.4)第3页(共30页)16.(3分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).三、解答题(17-19题各9分,20题12分,共39分)17.(9分)计算:(√2+1)2﹣√8+(﹣2)2.18.(9分)解不等式组:{2𝑥−3>12−𝑥3>𝑥3−2.19.(9分)如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.第4页(共30页)20.(12分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别ABCDE节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.四、解答题(21、22小题各9分,23题10分,共28分)21.(9分)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?第5页(共30页)22.(9分)如图,在平面直角坐标系xOy中,双曲线y=𝑘𝑥经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.23.(10分)如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=√5,求CE的长.第6页(共30页)五、解答题(24题11分,25、26题各12分,共35分)24.(11分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.第7页(共30页)25.(12分)如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求𝑚𝑛的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=√5+12,求PC的长.第8页(共30页)26.(12分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,32)(1)若此抛物线经过点B(2,﹣12),且与x轴相交于点E,F.①填空:b=(用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=12,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.第9页(共30页)2017年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2017•大连)在实数﹣1,0,3,12中,最大的数是()A.﹣1B.0C.3D.12【考点】2A:实数大小比较.菁优网版权所有【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.【解答】解:在实数﹣1,0,3,12中,最大的数是3,故选:C.【点评】此题主要考查了实数的比较大小,关键是掌握任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(3分)(2017•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球【考点】U3:由三视图判断几何体.菁优网版权所有【分析】根据主视图与左视图,主视图与俯视图的关系,可得答案.【解答】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得几何体是矩形,故选:B.【点评】本题考查了由三视图判断几何体,利用主视图与左视图,主视图与俯视图的关系是解题关键.第10页(共30页)3.(3分)(2017•大连)计算3𝑥(𝑥−1)2﹣3(𝑥−1)2的结果是()A.𝑥(𝑥−1)2B.1𝑥−1C.3𝑥−1D.3𝑥+1【考点】6B:分式的加减法.菁优网版权所有【分析】根据分式的运算法则即可求出答案.【解答】解:原式=3(𝑥−1)(𝑥−1)2=3𝑥−1故选(C)【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算,本题属于基础题型.4.(3分)(2017•大连)计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6【考点】47:幂的乘方与积的乘方.菁优网版权所有【分析】根据幂的乘方和积的乘方进行计算即可.【解答】解:原式=4a6,故选D.【点评】本题考查了积的乘方和幂的乘方,掌握运算法则是解题的关键.5.(3分)(2017•大连)如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°【考点】JA:平行线的性质.菁优网版权所有第11页(共30页)【分析】两直线平行,同位角相等.再根据邻补角的性质,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=108°,∵∠2+∠3=180°,∴∠2=72°,即∠2的度数等于72°.故选:C.【点评】本题主要考查了平行线的性质以及邻补角,解题时注意:两直线平行,同位角相等.6.(3分)(2017•大连)同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.34【考点】X6:列表法与树状图法.菁优网版权所有【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=14.故答案为14.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能第12页(共30页)的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.(3分)(2017•大连)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【考点】Q3:坐标与图形变化﹣平移.菁优网版权所有【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.8.(3分)(2017•大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2aB.2√2aC.3aD.4√33𝑎【考点】KP:直角三角形斜边上的中线.菁优网版权所有【分析】根据勾股定理得到CE=√2a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=√2a,第13页(共30页)∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2√2a,故选B.【点评】本题考查了直角三角形斜边上的中线,三角形内角和定理的应用,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.二、填空题(每小题3分,共24分)9.(3分)(2017•大连)计算:﹣12÷3=﹣4.【考点】1D:有理数的除法.菁优网版权所有【专题】11:计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣4.故答案为:﹣4【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.10.(3分)(2017•大连)下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是15岁.【考点】W5:众数.菁优网版权所有【专题】11:计算题;541:数据的收集与整理.【分析】根据表格中的数据确定出人数最多的队员年龄确定出众数即可.【解答】解:根据表格得:该校女子排球队队员年龄的众数是15岁,故答案为:15【点评】此题考查了众数,弄清众数的定义是解本题的关键.11.(3分)(2017•大连)五边形的内角和为540°.【考点】L3:多边形内角与外角.菁优网版权所有【专题】1:常规题型.第14页(共30页)【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键,是基础题.12.(3分)(2017•大连)如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为5cm.【考点】M2:垂径定理;